
NANI Calculator Toolbox Documentation

June 2010 Bongghi Hong and Dennis P. Swaney

NANI Calculator Toolbox Documentation

June 2010 Bongghi Hong and Dennis P. Swaney

Table of Contents

1. Overview	2
2. Input Preparation	4
3. NANI-GIS Tools	10
3.1. Calculating County Proportions	10
3.2. Calculating CMAQ Grid Proportions	13
4. NANI-Extraction Tools	
4.1. Extracting Agricultural Census Data	17
4.1.1. Extracting 1987, 1992, and 1997 Data	17
4.1.1.1. Extracting Crop Data	17
4.1.1.2. Extracting Animal Data	
4.1.2. Extracting 2002 and 2007 Data	
4.1.2.1. Extracting Crop Data	25
4.1.2.2. Extracting Animal Data	
4.2. Extracting Census Data	
4.3. Extracting USGS Nutrient Input Estimates	
4.4. Extracting CMAQ Deposition Estimates	
5. NANI-Accounting Tools	
5.1. Calculating Net Food and Feed Imports	
5.1.1. Calculating Crop N Production	
5.1.2. Calculating Animal N Production and N Consumption	
5.1.2.1. Static Livestock Model	43
5.1.2.2. Dynamic Livestock Model	47
5.1.2.3. Animal N Products	
5.1.3. Calculating Human N Consumption	53
5.1.4. Calculating Net Food and Feed Imports	
5.2. Calculating Agricultural N Fixation	
5.3. Calculating Fertilizer N Application	
5.4. Calculating Atmospheric N Deposition	
5.5. Calculating Non-Food Crop Exports	
5.6. Calculating NANI	
6. Ongoing and future developments	
7. Acknowledgements	
8 References	

1. Overview

NANI (Net Anthropogenic Nitrogen Inputs), first introduced by Howarth et al. (1996), estimate the human-induced nitrogen inputs to a watershed and have been shown to be a good predictor of riverine nitrogen export at a large scale, multi-year average basis. NANI have been calculated as the sum of four major components (Figure 1.1): atmospheric N deposition, fertilizer N application, agricultural N fixation, and net food and feed imports, which in turn are composed of crop and animal N production (negative fluxes removing N from watersheds) and animal and human N consumption (positive fluxes adding N to watersheds). Assuming approximate steady-state behavior, riverine N export is a fixed proportion of net nitrogen inputs.

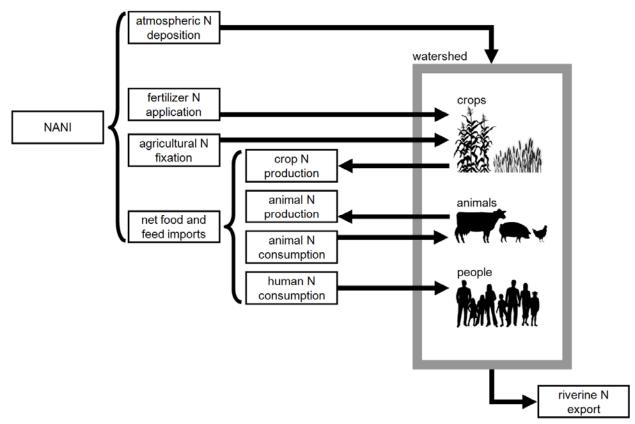


Figure 1.1. Overview of NANI.

The NANI Calculator Toolbox allows the user to calculate NANI in any area within the contiguous United States (e.g., watershed, county, etc.) from nationally available databases downloadable from the Internet. The toolbox is composed of a set of tools that: (1) calculate the proportions of various regions (political or gridded) in which data are collected that fall into areas of interest such as watersheds ("NANI-GIS tools"; Section 3), (2) extract and organize relevant data downloaded from web-based datasets to be used by the accounting tools ("NANI-extraction tools"; Section 4), and (3) calculate NANI, their components, and other relevant items such as animal excretion ("NANI-accounting tools"; Section 5).

The toolbox is designed so that for the contiguous United States, the only input the user needs to provide is a map of areas of interest (see Section 2 for input preparation). All other inputs, such as Agricultural Census data, are included in the toolbox package. Individual components of the toolbox are divided into independent modules, with output from one tool directly used as input to another, and flexible enough to be replaced as new datasets become available. At present, the tools are designed for the US datasets only, but we are currently expanding its use to global datasets such as the European databases (see Section 6 for more discussion).

This document describes how each of the tools in the toolbox works, using the NANI calculation of selected US watersheds as an example. Figure 1.2 below shows an overview of the NANI calculation applied in this example. Note that how the specific calculation is performed may be altered depending on the availability of dataset. For example, in this example the watershed population is estimated based on the county level census data. If desired, however, the same calculation can be performed at the census block level by incorporating appropriate datasets.

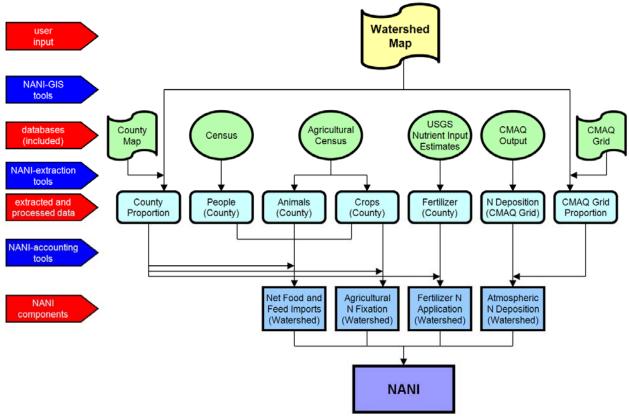


Figure 1.2. Overview of NANI Calculator Toolbox.

2. Input Preparation

Before using the toolbox, the user needs to prepare a map of watershed(s) that can be read by the ESRI ArcGIS software (http://www.esri.com/software/arcgis/index.html). The watershed map may be delineated by the user from an elevation map or downloaded from the Internet, for example from the National Hydrography Dataset (NHD) website at http://nhd.usgs.gov/index.html. In this example, we use a total of 144 US watersheds including (Figure 2.1):

- 29 Northeastern US Watersheds
- 12 Southeastern US Watersheds
- 18 Lake Michigan Watersheds
- 23 Western US Watersheds
- 62 Mississippi Watersheds

Note that Figure 2.1 is showing only some selected watersheds where NANI, or related "proxy" variables that can be used to estimate NANI, have been reported in the previous publications. For example, out of the 29 Northeastern US watersheds used in this example, only the 16 watersheds where the NANI had been previously reported by Howarth et al. (2006) are shown in Figure 2.1. A complete list of the 144 US watersheds (available as a shapefile "US_Watersheds.shp" in the toolbox package) and their description are given in Table 2.1 below.

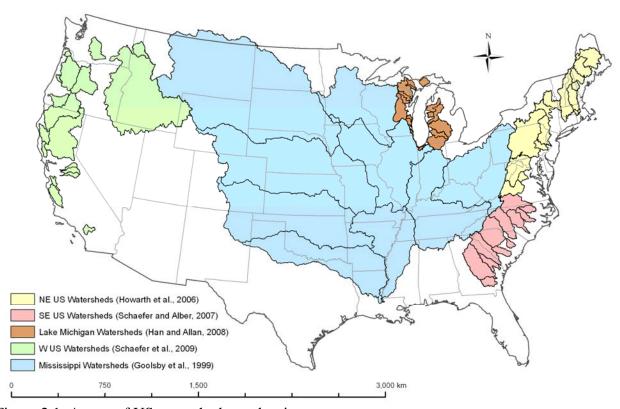


Figure 2.1. A map of US watersheds used as input.

Table 2.1. Description of US watersheds used as input.

Group	Watershed	Watershed	Area	Description
	Code	Name	(km ²)	Description
Northeastern	PEN	Penobscot	20,101	USGS 01036390, Howarth et al. (2006)
US Watersheds	KEN	Kennebec	13,994	USGS 01049265, Howarth et al. (2006)
	AND	Androscoggin	8,437	USGS 01059000, Howarth et al. (2006)
	SAC	Saco	3,354	USGS 01066000, Howarth et al. (2006)
	MERR	Merrimack	12,043	USGS 01100000, Howarth et al. (2006)
	CHA	Charles	464	USGS 01103500, Howarth et al. (2006)
	BLA	Blackstone	1,091	USGS 01112500, Howarth et al. (2006)
	CON	Connecticut	26,317	USGS 01184000, Howarth et al. (2006)
	HUD	Hudson	11,952	USGS 01357540, Howarth et al. (2006)
	MOH	Mohawk	9,107	USGS 01357500, Howarth et al. (2006)
	DEL	Delaware	17,543	USGS 01463500, Howarth et al. (2006)
	SCH	Schuylkill	4,925	USGS 01474500, Howarth et al. (2006)
	SUS	Susquehanna	70,152	USGS 01578310, Howarth et al. (2006)
	POT	Potomac	29,997	USGS 01646500, Howarth et al. (2006)
	RAP	Rappahannock	4,152	USGS 01668000, Howarth et al. (2006)
	JAM	James	16,190	USGS 02035000, Howarth et al. (2006)
	HUD_LOWER	Lower Hudson	17,053	Hudson River Basin (Lower)
	HUD_BASIN	Hudson River Basin	38,123	Hudson River Basin (Whole)
	HUD_UPPER_01	Upper Hudson Subbasin	4,305	Upper Hudson, New York (HUC 02020001)
	HUD_UPPER_02	Sacandaga Subbasin	2,724	Sacandaga, New York (HUC 02020002)
	HUD_UPPER_03	Hudson-Hoosic Subbasin	4,931	Hudson-Hoosic, New York, Massachusetts, Vermont (HUC 02020003)
	HUD_MOHAWK_01	Mohawk Subbasin	6,702	Mohawk, New York (HUC 02020004)
	HUD_MOHAWK_02	Schoharie Subbasin	2,407	Schoharie, New York (HUC 02020005)
	HUD_LOWER_01	Middle Hudson Subbasin	6,286	Middle Hudson, Massachusetts, New York (HUC 02020006)
	HUD_LOWER_02	Rondout Subbasin	3,154	Rondout, New Jersey, New York (HUC 02020007)
	HUD_LOWER_03	Hudson-Wappinger Subbasin	2,431	Hudson-Wappinger, New York (HUC 02020008)
	HUD_LOWER_04	Lower Hudson Subbasin	1,866	Lower Hudson, Connecticut, New Jersey, New York (HUC 02030101)
	HUD_LOWER_05	Bronx Subbasin	375	Bronx, New York (HUC 02030102)
	HUD_LOWER_06	Hackensack-Passaic Subbasin	2,940	Hackensack-Passaic, New Jersey, New York (HUC 02030103)
Southeastern	ROA	Roanoke	21,988	Schaefer and Alber (2007)
US Watersheds	PAM	Pamlico	5,743	Schaefer and Alber (2007)
	NEU	Neuse	7,029	Schaefer and Alber (2007)
	CFR	Cape Fear	13,601	Schaefer and Alber (2007)
	PEE	Pee Dee	22,812	Schaefer and Alber (2007)
	SNT	Santee	33,372	Schaefer and Alber (2007)
	BLK	Black	3,277	Schaefer and Alber (2007)
	EDI	Edisto	6,949	Schaefer and Alber (2007)
	SAV	Savannah	25,495	Schaefer and Alber (2007)
	OGE	Ogeechee	8,420	Schaefer and Alber (2007)
	ALT	Altamaha	35,171	Schaefer and Alber (2007)
	SAT	Satilla	7,348	Schaefer and Alber (2007)

Table 2.1. Description of US watersheds used as input.

Group	Watershed	Watershed	Area	Description
Group	Code	Name	(km^2)	Description
Lake Michigan	LM_01	Root	465	USGS 04087242, Han and Allan (2008)
Watersheds	LM_02	Milwaukee	1,732	USGS 04087010, Han and Allan (2008)
	LM_03	Sheboygan	1,164	USGS 04086000, Han and Allan (2008)
	LM_04	Fox	15,795	USGS 04085059, Han and Allan (2008)
	LM_05	Oconto	2,507	USGS 04071775, Han and Allan (2008)
	LM_06	Peshtigo	3,018	USGS 04069500, Han and Allan (2008)
	LM_07	Menominee	10,543	USGS 04067651, Han and Allan (2008)
	LM_08	Ford	1,199	USGS 04059500, Han and Allan (2008)
	LM_09	Escanaba	2,393	USGS 04059000, Han and Allan (2008)
	LM_10	Manistique	3,797	USGS 04049500, Han and Allan (2008)
	LM_11	Manistee	4,936	USGS 04126000, Han and Allan (2008)
	LM_12	Pere Marquette	1,814	USGS 04122500, Han and Allan (2008)
	LM_13	Muskegon	7,092	USGS 04122150, Han and Allan (2008)
	LM_14	Grand	14,395	USGS 04120250, Han and Allan (2008)
	LM_15	Kalamazoo	5,250	USGS 04108670, Han and Allan (2008)
	LM_16	St Joseph	12,157	USGS 04102533, Han and Allan (2008)
	LM_17	Trail Creek	166	USGS 04095380, Han and Allan (2008)
	LM_18	Burns Ditch	869	USGS 04095090, Han and Allan (2008)
Western US	SPO	Spokane	9,932	Schaefer et al. (2009)
Watersheds	YAK	Yakima	14,542	Schaefer et al. (2009)
	SNA	Snake	279,438	Schaefer et al. (2009)
	NEH	Nehalem	1,747	Schaefer et al. (2009)
	DES	Deschutes	27,787	Schaefer et al. (2009)
	JDY	John Day	19,764	Schaefer et al. (2009)
	WIL	Willamette	28,992	Schaefer et al. (2009)
	SIU	Siuslaw	1,531	Schaefer et al. (2009)
	ROG	Rogue	10,188	Schaefer et al. (2009)
	KLA	Klamath	40,356	Schaefer et al. (2009)
	EEL	Eel	8,058	Schaefer et al. (2009)
	RUS	Russian	3,470	Schaefer et al. (2009)
	SCR	Sacramento	68,332	Schaefer et al. (2009)
	STN	Stanislaus	2,809	Schaefer et al. (2009)
	SJQ	San Joaquin	72,129	Schaefer et al. (2009)
	TUO	Tuolumne	4,824	Schaefer et al. (2009)
	MERC	Merced	3,245	Schaefer et al. (2009)
	PAJ	Pajaro	3,063	Schaefer et al. (2009)
	SAL	Salinas	10,568	Schaefer et al. (2009)
	CUY	Cuyama	2,279	Schaefer et al. (2009)
	STC	Santa Clara	1,694	Schaefer et al. (2009)
	STA	Santa Ana	3,881	Schaefer et al. (2009)
	SJQ_NET	San Joaquin (Net)	61,251	SJQ - STN - TUO - MER, Schaefer et al. (2009)

Table 2.1 (Continued).

Group	Watershed Code	Watershed Name	Area (km²)	Description
Mississippi	MS_L_01	Upper Ohio	249,888	Ohio River at Cannelton Dam, KY (USGS 03303280), Goolsby et al. (1999)
Watersheds	MS_L_02	Lower Ohio	277,767	Ohio River at Grand Chain, IL (USGS 03612500), Goolsby et al. (1999)
Large)	MS_L_03	Upper Missouri	831,577	Missouri River at Omaha, NE (USGS 06610000), Goolsby et al. (1999)
(=	MS_L_04	Lower Missouri	515,589	Missouri River at Hermann, MO (USGS 06934500), Goolsby et al. (1999)
	MS_L_05	Upper Mississippi	222,049	Mississippi River at Clinton, IA (USGS 05420500), Goolsby et al. (1999)
	MS_L_06	Middle Mississippi	271,828	Mississippi River at Thebes, IL (USGS 07022000), Goolsby et al. (1999)
	MS_L_07	Arkansas	408,379	Arkansas River at Little Rock, AR (USGS 07263620), Goolsby et al. (1999)
	MS_L_08	Lower Mississippi	189,924	Mississippi River at St. Francisville, LA (USGS 07373420), Goolsby et al. (1999)
	MS_L_09	Red and Ouachita	240,477	Atchafalaya River at Melville, LA (USGS 07381495), Goolsby et al. (1999)
	MS_L_06_UPPER	Middle Mississippi (Upper)	224,375	Mississippi River below Grafton, IL (USGS 05587455), Aulenbach et al. (2007)
	MS_L_06_LOWER	Middle Mississippi (Lower)	47,714	MS_L_06 - MS_L_06_UPPER, Aulenbach et al. (2007)
Mississippi	MS_S_01	Allegheny R at New Kensington	29,951	Allegheny River at New Kensington, PA, Goolsby et al. (1999)
Watersheds	MS_S_02	Monongahela R at Braddock	19,031	Monongahela River at Braddock, PA, Goolsby et al. (1999)
Small)	MS_S_03	Muskingham R at McConnelsville	19,349	Muskingham River at McConnelsville, OH, Goolsby et al. (1999)
,SIIIIII)	MS_S_04	Kanawha R at Winfield	30,674	Kanawha River at Winfield, WV, Goolsby et al. (1999)
	MS_S_05	Scioto R at Higby	13,224	Scioto River at Higby, OH, Goolsby et al. (1999)
	MS_S_06	Great Miami at New Baltimore	10,008	Great Miami at New Baltimore, OH, Goolsby et al. (1999)
	MS_S_07	Kentucky R at Lockport	15,886	Kentucky River at Lockport, KY, Goolsby et al. (1999)
	MS_S_08	Wabash R at New Harmony	75,874	Wabash River at New Harmony, IN, Goolsby et al. (1999)
	MS_S_09	Cumberland R near Grand Rivers	45,760	Cumberland River near Grand Rivers, KY, Goolsby et al. (1999)
	MS_S_10	Tennessee R near Paducah	105,872	Tennessee River near Paducah, KY, Goolsby et al. (1999)
	MS_S_11	Mississippi R near Royalton	30,178	Mississippi River near Royalton, MN, Goolsby et al. (1999)
	MS_S_12	Minnesota R at Jordan	42,480	Minnesota River at Jordan, MN, Goolsby et al. (1999)
	MS_S_13	St Croix R at St Croix Falls	16,542	St. Croix River at St. Croix Falls, WI, Goolsby et al. (1999)
	MS_S_14	Chippewa R at Durand	23,475	Chippewa River at Durand, WI, Goolsby et al. (1999)
	MS_S_15	Wisconsin R at Muscoda	27,156	Wisconsin River at Muscoda, WI, Goolsby et al. (1999)
	MS_S_16	Rock R near Joslin	24,961	Rock River near Joslin, IL, Goolsby et al. (1999)
	MS_S_17	Cedar R at Cedar Falls	12,439	Cedar River at Cedar Falls, IA, Goolsby et al. (1999)
	MS_S_18	Iowa R at Wapello	20,065	Iowa River at Wapello, IA, Goolsby et al. (1999)
	MS_S_19	Skunk R at Augusta	11,222	Skunk River at Augusta, IA, Goolsby et al. (1999)
	MS_S_20	Raccoon R at Van Meter	8,904	Raccoon River at Van Meter/Des Moines, IA, Goolsby et al. (1999)
	MS_S_21	Des Moines at St Francisville	28,238	Des Moines at St. Francisville, MO, Goolsby et al. (1999)
	MS_S_22	Illinois R at Marseilles	21,359	Illinois River at Marseilles, IL, Goolsby et al. (1999)
	MS_S_23	Illinois R at Valley City	47,733	Illinois River at Valley City, IL, Goolsby et al. (1999)
	MS_S_24	Kaskaskia R near Venedy Station	11,344	Kaskaskia River near Venedy Station, IL, Goolsby et al. (1999)
	MS_S_25	Milk R near Nashua	59,015	Milk River near Nashua, MT, Goolsby et al. (1999)
	MS_S_26	Missouri R near Culbertson	183,610	Missouri River near Culbertson, MT, Goolsby et al. (1999)
	MS_S_27	Bighorn R near Bighorn	59,344	Bighorn River near Bighorn, MT, Goolsby et al. (1999)
	MS_S_28	Yellowstone R near Sydney	119,493	Yellowstone River near Sydney, MT, Goolsby et al. (1999)
	MS_S_29	Cheyenne R at Cherry Creek	62,809	Cheyenne River at Cherry Creek, SD, Goolsby et al. (1999)
	MS_S_30	James R near Scotland	54,522	James River near Scotland, SD, Goolsby et al. (1999)

Table 2.1 (Continued).

Group	Watershed Code	Watershed Name	Area (km²)	Description
Mississippi	MS_S_31	Platte R near Louisville	221,481	Platte River near Louisville, NE, Goolsby et al. (1999)
Watersheds	MS_S_32	Kansas R at Desoto	155,020	Kansas River at Desoto, KS, Goolsby et al. (1999)
(Small)	MS_S_33	Grand R near Sumner	18,012	Grand River near Sumner, MO, Goolsby et al. (1999)
	MS_S_34	Osage R below St Thomas	37,777	Osage River below St. Thomas, MO, Goolsby et al. (1999)
	MS_S_35	St Francis Bay at Riverfront	16,908	St. Francis Bay at Riverfront, AR, Goolsby et al. (1999)
	MS_S_36	White R at Clarendon	66,063	White River at Clarendon, AR, Goolsby et al. (1999)
	MS_S_37	Arkansas R at Tulsa	192,978	Arkansas River at Tulsa, OK, Goolsby et al. (1999)
	MS_S_38	Canadian R at Calvin	71,574	Canadian River at Calvin, OK, Goolsby et al. (1999)
	MS_S_39	Yazoo R at Redwood	32,335	Yazoo River at Redwood, MS, Goolsby et al. (1999)
	MS_S_40	Big Black R near Bovina	7,104	Big Black River near Bovina, MS, Goolsby et al. (1999)
	MS_S_41	Red R at Alexandria	174,163	Red River at Alexandria, LA, Goolsby et al. (1999)
	MS_S_42	Ouachita R near Columbia	40,824	Ouachita River near Columbia, LA, Goolsby et al. (1999)
	MS_S_NET_01	Upper Ohio (Net)	111,446	MS_L_01 - MS_S Watersheds, Goolsby et al. (1999)
	MS_S_NET_02	Lower Ohio (Net)	50,118	MS_L_02 - MS_S Watersheds, Goolsby et al. (1999)
	MS_S_NET_03	Upper Missouri (Net)	292,140	MS_L_03 - MS_S Watersheds, Goolsby et al. (1999)
	MS_S_NET_04	Lower Missouri (Net)	82,725	MS_L_04 - MS_S Watersheds, Goolsby et al. (1999)
	MS_S_NET_05	Upper Mississippi (Net)	82,262	MS_L_05 - MS_S Watersheds, Goolsby et al. (1999)
	MS_S_NET_06	Middle Mississippi (Net)	85,081	MS_L_06 - MS_S Watersheds, Goolsby et al. (1999)
	MS_S_NET_07	Arkansas (Net)	143,696	MS_L_07 - MS_S Watersheds, Goolsby et al. (1999)
	MS_S_NET_08	Lower Mississippi (Net)	67,504	MS_L_08 - MS_S Watersheds, Goolsby et al. (1999)
	MS_S_NET_09	Red and Ouachita (Net)	25,711	MS_L_09 - MS_S Watersheds, Goolsby et al. (1999)

Note that all the watersheds and their sub-watersheds, although some may be overlapping each other, are stored as a single ArcGIS shapefile and noted in this document as "a map of watershed(s)". For example, the Bronx Subbasin (HUC 02030102) "HUD_LOWER_05" (Table 2.1) is a part of the Lower Hudson Watershed "HUD_LOWER", which in turn is a part of the Whole Hudson River Basin "HUD_BASIN".

Figure 2.2 below shows how the watershed map and its attribute table look like when opened with ArcMap. The attribute table of the watershed map can have multiple columns, but there must be a column containing the unique identifier for each watershed that will be used as input to the NANI-GIS tools of the toolbox (in this example, "W_CODE").

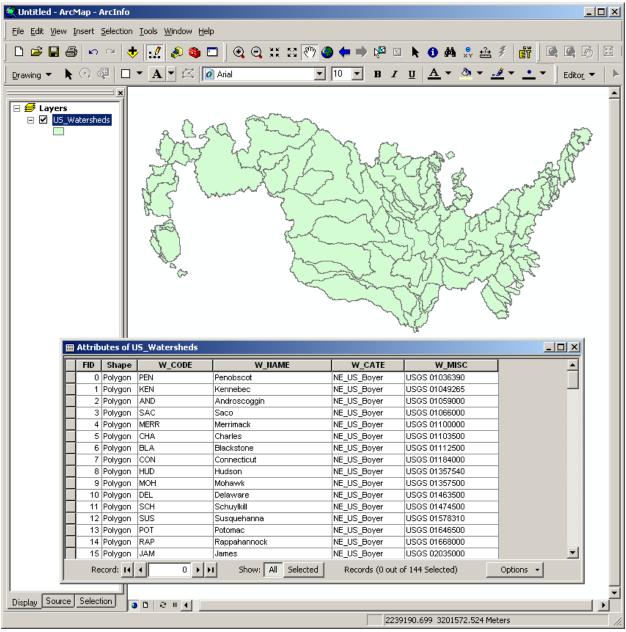


Figure 2.2. Input watershed map and its attribute table opened with ArcMap.

3. NANI-GIS Tools

3.1. Calculating County Proportions

As a first step, one of the NANI-GIS tools "Calculate Map Proportions" (Figure 3.1.1) is used to calculate the proportions of the US counties falling into each of the 144 US watersheds. The resulting output table is then used as an input to the NANI-extraction and NANI-accounting tools described in Sections 4 and 5, respectively. (Another NANI-GIS tool "Distribute Map Data" shown in Figure 3.1.1 has been developed for the application to the European databases and will not be discussed in this document.)

To use the tool, start ArcMap and open the "NANI_GIS_Tool.mxd" file included in the toolbox package. A toolbar "NANI-GIS Tools" will appear (Figure 3.1.1). Add the US county map "US_Counties.shp" included in the toolbox package and the input watershed map "US_Watersheds.shp" described in Section 2 (Figure 3.1.2).

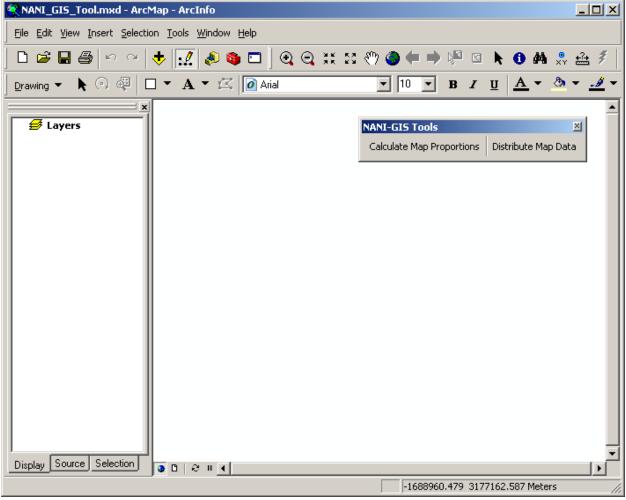


Figure 3.1.1. NANI-GIS tools running in ArcMap.

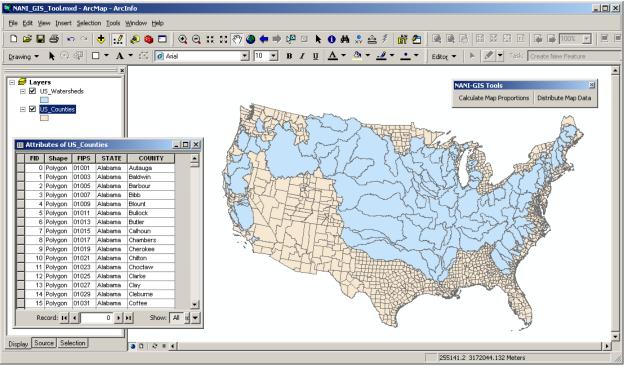


Figure 3.1.2. US county and watershed maps added as input to NANI-GIS tool.

Figure 3.1.2 is showing the attribute table of the US county map included in the toolbox package. As in the watershed map, the county map (or any other data map used as input to the NANI-GIS tools) must have a column containing the unique identifier (in this example, "FIPS").

Click on "Calculate Map Proportions" and a tool window will appear (Figure 3.1.3). Choose the names of the watershed and county maps ("US_Watersheds" and "US_Counties", respectively) and their unique identifiers ("W_CODE" and "FIPS", respectively). Since the NANI-extraction tools described in Section 4 require the county proportion table to have state and county names, the "STATE" and "COUNTY" should be selected as additional output field names (Figure 3.1.3). In this example, the output table and map names are specified as "Cnty_Prop.txt" and "Cnty_Prop.shp", respectively.

The calculation will be performed after clicking "OK". The tool first calculates the watershed and county areas, intersect the watershed and county maps, calculate the areas of intersected polygons, and calculate the proportions of counties falling into each input watershed. The intersect map "Cnty_Prop.shp" is added to ArcMap as output shapefile (Figure 3.1.4) and the output table "Cnty_Prop.txt" (comma-delimited text file), which is used as input to the NANI-extraction (Sections 4.1, 4.2, and 4.3) and NANI-accounting (Section 5.1, 5.2, and 5.3) tools, is created in the output folder. Figure 3.1.5 shows how the table looks like when opened with Microsoft Excel.

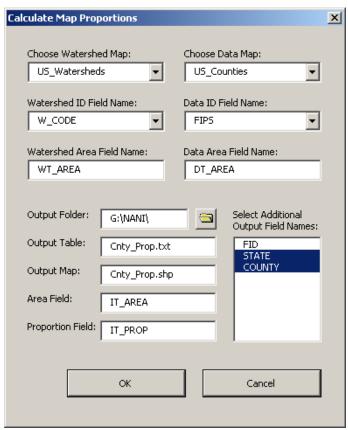


Figure 3.1.3. NANI-GIS tool window for calculating county proportions.

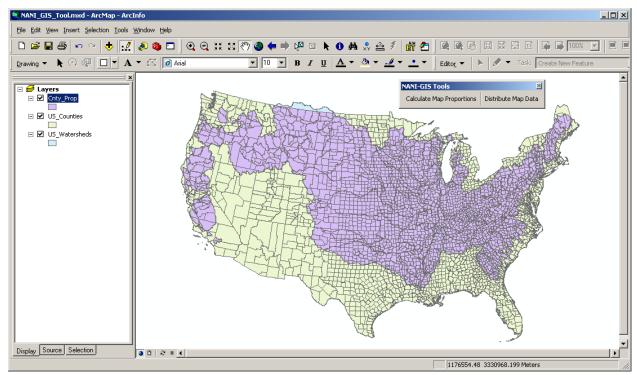


Figure 3.1.4. County intersect output map created by NANI-GIS tool.

FIPS		Home		Layout Formulas	Data Review	View	Add-Ins						(0 - □
FIPS		P26	- (9	<i>f</i> _{sc} 0						1				
Area_km2 -	4					_				1	J		L	M
1009 Alabama	1	FIPS	STATE	COUNTY	Area_km2	PEN	KEN				CHA			
4 1033 Alabama Colbert 1618.822017 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2			-	-		13993.96	8436.666	3354.168	12043.42	464.1489	1090.7	26316.81	11951.6
5 1043 Alabama Cullman 1947,917897 0 </td <td>3</td> <td></td> <td></td> <td></td> <td>1691.637384</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	3				1691.637384	0	0	0	0	0	0	0	0	
6 1049 Alabama DeKalb 2015.203607 0 <td>4</td> <td>1033</td> <td>Alabama</td> <td>Colbert</td> <td>1618.822017</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	4	1033	Alabama	Colbert	1618.822017	0	0	0	0	0	0	0	0	
7 1055 Alabama Etowah 1425.590932 0 <td>5</td> <td>1043</td> <td>Alabama</td> <td>Cullman</td> <td>1947.917897</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td></td>	5	1043	Alabama	Cullman	1947.917897	0	0	0	0	0	0	0	0	
8 1059 Alabama Franklin 1674.135201 0 <t< td=""><td>6</td><td>1049</td><td>Alabama</td><td>DeKalb</td><td>2015.203607</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td></t<>	6	1049	Alabama	DeKalb	2015.203607	0	0	0	0	0	0	0	0	
9 1071 Alabama	7	1055	Alabama	Etowah	1425.590932	0	0	0	0	0	0	0	0	
10 1077 Alabama Lauderdale 1862.223221 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1079 Alabama Lawrence 1861.593779 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1079 Alabama Limestone 1571.777679 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1083 Alabama Madison 2103.560677 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8	1059	Alabama	Franklin	1674.135201	0	0	0	0	0	0	0	0	
11 1079 Alabama Lawrence 1861.593779 0 0 <t< td=""><td>9</td><td>1071</td><td>Alabama</td><td>Jackson</td><td>2924.789055</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td></t<>	9	1071	Alabama	Jackson	2924.789055	0	0	0	0	0	0	0	0	
12 1083 Alabama Limestone 1571.777679 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1089 Alabama Madison 2103.560677 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1	10	1077	Alabama	Lauderdale	1862.223221	0	0	0	0	0	0	0	0	
13 1089 Alabama Madison 2103.560677 0 <t< td=""><td>11</td><td>1079</td><td>Alabama</td><td>Lawrence</td><td>1861.593779</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td></t<>	11	1079	Alabama	Lawrence	1861.593779	0	0	0	0	0	0	0	0	
14 1093 Alabama Marion 1922.37775 0	12	1083	Alabama	Limestone	1571.777679	0	0	0	0	0	0	0	0	
15 1095 Alabama Marshall 1617.892514 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1	13	1089	Alabama	Madison	2103.560677	0	0	0	0	0	0	0	0	
16 1103 Alabama Morgan 1550.475131 0 0 0 0 0 0 0 0 17 1133 Alabama Winston 1636.583993 0 0 0 0 0 0 0 0 18 5001 Arkansas Arkansas 2677.20574 0 0 0 0 0 0 0 0 19 5003 Arkansas Ashley 2427.04668 0 0 0 0 0 0 0 20 5005 Arkansas Baxter 1511.382962 0 0 0 0 0 0 0 21 5007 Arkansas Benton 2263.578146 0 0 0 0 0 0 0 22 5009 Arkansas Boone 1557.487076 0 0 0 0 0 0 0 23 5011 Arkansas Bradley 1695.439372 0 0 0 0 0 0 0	14	1093	Alabama	Marion	1922.37775	0	0	0	0	0	0	0	0	
17 1133 Alabama Winston 1636.583993 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	15	1095	Alabama	Marshall	1617.892514	0	0	0	0	0	0	0	0	
18 5001 Arkansas Arkansas 2677.20574 0 0 0 0 0 0 0 0 19 5003 Arkansas Ashley 2427.04668 0 0 0 0 0 0 0 0 20 5005 Arkansas Baxter 1511.382962 0 0 0 0 0 0 0 0 21 5007 Arkansas Benton 2263.578146 0 0 0 0 0 0 0 22 5009 Arkansas Boone 1557.487076 0 0 0 0 0 0 0 23 5011 Arkansas Bradley 1695.439372 0 0 0 0 0 0 0	16	1103	Alabama	Morgan	1550.475131	0	0	0	0	0	0	0	0	
19 5003 Arkansas Ashley 2427.04668 0 0 0 0 0 0 0 0 20 5005 Arkansas Baxter 1511.382962 0 0 0 0 0 0 0 21 5007 Arkansas Benton 2263.578146 0 0 0 0 0 0 0 22 5009 Arkansas Boone 1557.487076 0 0 0 0 0 0 0 23 5011 Arkansas Bradley 1695.439372 0 0 0 0 0 0 0	17	1133	Alabama	Winston	1636.583993	0	0	0	0	0	0	0	0	
20 5005 Arkansas Baxter 1511.382962 0 0 0 0 0 0 0 21 5007 Arkansas Benton 2263.578146 0 0 0 0 0 0 0 22 5009 Arkansas Boone 1557.487076 0 0 0 0 0 0 0 23 5011 Arkansas Bradley 1695.439372 0 0 0 0 0 0 0	18	5001	Arkansas	Arkansas	2677.20574	0	0	0	0	0	0	0	0	
21 5007 Arkansas Benton 2263.578146 0 0 0 0 0 0 0 22 5009 Arkansas Boone 1557.487076 0 0 0 0 0 0 0 23 5011 Arkansas Bradley 1695.439372 0 0 0 0 0 0 0	19	5003	Arkansas	Ashley	2427.04668	0	0	0	0	0	0	0	0	
22 5009 Arkansas Boone 1557.487076 0 0 0 0 0 0 0 0 0 0 0 0 23 5011 Arkansas Bradley 1695.439372 0 0 0 0 0 0 0 0 0	20	5005	Arkansas	Baxter	1511.382962	0	0	0	0	0	0	0	0	
23 5011 Arkansas Bradley 1695.439372 0 0 0 0 0 0 0	21	5007	Arkansas	Benton	2263.578146	0	0	0	0	0	0	0	0	
	22	5009	Arkansas	Boone	1557.487076	0	0	0	0	0	0	0	0	
	23	5011	Arkansas	Bradley	1695.439372	0	0	0	0	0	0	0	0	
H () H Cnty_Prop ()	4	→ → Cnty	Prop 🐫					1						

Figure 3.1.5. County proportion output table created by NANI-GIS tool.

3.2. Calculating CMAQ Grid Proportions

Unlike other NANI components, the atmospheric N deposition is not estimated from the county-based data in this example. Instead, it is based on the 36 km × 36 km grid map containing various N deposition estimates generated by the Community Multiscale Air Quality (CMAQ) model (Byun and Schere 2006). The CMAQ grid map and deposition estimates for each grid cell can be obtained using the Watershed Deposition Tool (WDT) available at http://www.epa.gov/AMD/EcoExposure/depositionMapping.html (Figure 3.2.1). A detailed instruction on obtaining and processing CMAQ data can be found in the documentation "Generating N Deposition Maps for SE US Watersheds" available at http://www.eeb.cornell.edu/biogeo/nanc/GIS_methods/gis_methods.htm.

As done in Section 3.1, start by opening the "NANI_GIS_Tool.mxd" file included in the toolbox package (Figure 3.1.1). Add the CMAQ grid map "CMAQ_Grid.shp" included in the toolbox package and the watershed map "US_Watersheds.shp" described in Section 2 (Figure 3.2.2). The attribute table of the CMAQ grid map is also shown in Figure 3.2.2. Again, the CMAQ grid map must have a column containing the unique identifier (in this example, "GRID_NAME").

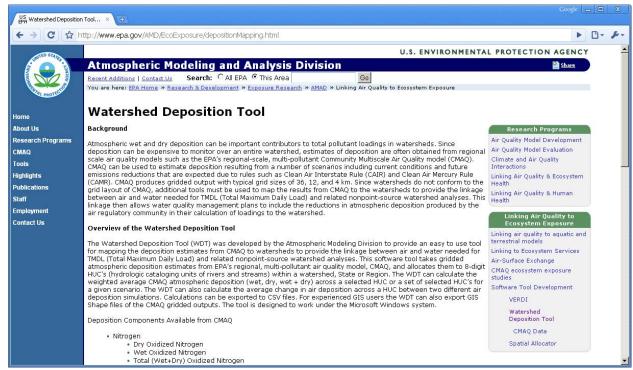


Figure 3.2.1. Watershed Deposition Tool website.

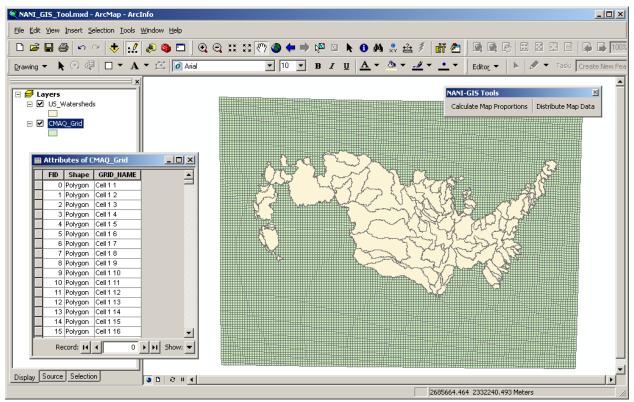


Figure 3.2.2. CMAQ grid and watershed maps added as input to NANI-GIS tool.

Click on "Calculate Map Proportions" and a tool window will appear (Figure 3.2.3). Choose the names of the watershed and CMAQ grid maps ("US_Watersheds" and "CMAQ_Grid", respectively) and their unique identifiers ("W_CODE" and "GRID_NAME", respectively). Unlike in the calculation of county proportion (Section 3.1), no additional output field names are selected (Figure 3.2.3). In this example, the output table and map names are specified as "Grid_Prop.txt" and "Grid_Prop.shp", respectively.

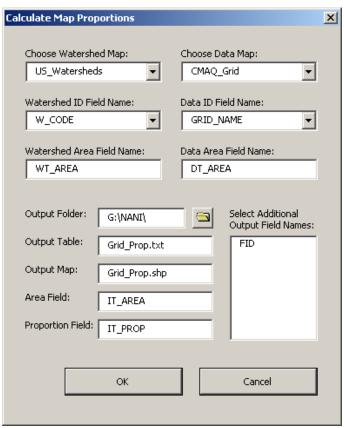


Figure 3.2.3. NANI-GIS tool window for calculating CMAQ grid proportions.

The calculation will be performed after clicking "OK". Again, the tool first calculates the watershed and grid areas, intersect the watershed and grid maps, calculate the areas of intersected polygons, and calculate the proportions of CMAQ grids falling into each input watershed. The intersect map "Grid_Prop.shp" is added to ArcMap as output shapefile (Figure 3.2.4) and the output table "Grid_Prop.txt" (comma-delimited text file), which is used as input to the NANI-extraction (Section 4.4) and NANI-accounting (Section 5.4) tools, is created in the output folder. Figure 3.2.5 shows how the table looks like when opened with Microsoft Excel.

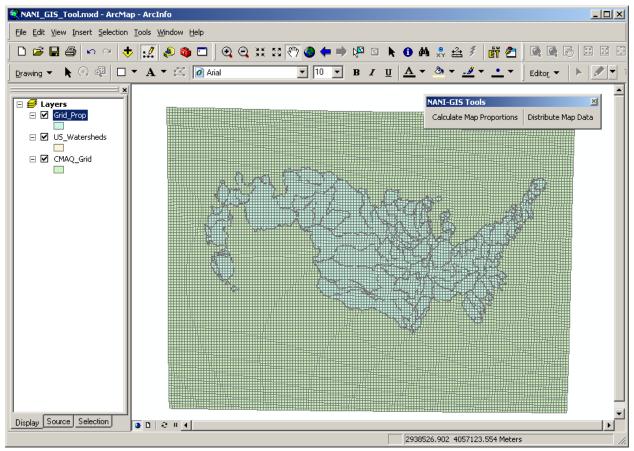


Figure 3.2.4. Grid intersect output map created by NANI-GIS tool.

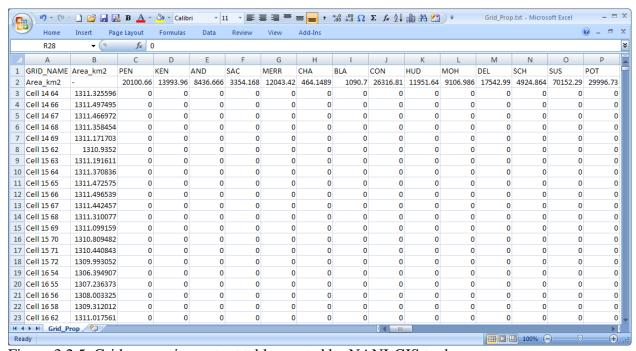


Figure 3.2.5. Grid proportion output table created by NANI-GIS tool.

4. NANI-Extraction Tools

4.1. Extracting Agricultural Census Data

4.1.1. Extracting 1987, 1992, and 1997 Data

4.1.1.1. Extracting Crop Data

The Agricultural Census data are used to obtain the harvested crop areas and quantities and animal inventory and sales data, which in turn are used to calculate various NANI components such as crop and animal N production, animal N consumption, and agricultural N fixation. In this section, the harvested crop areas and quantities in 1987, 1992, and 1997 are extracted from the Agricultural Census database (downloaded from the Internet and stored in the form of its original structure) and organized into a format suitable as input to the NANI-accounting tools (Section 5) using one of the NANI-extraction tools included in the toolbox package "NANI_Extraction_Tool_Ag_Census_Crops_97_92_87.xlsm" (Figure 4.1.1.1.1).

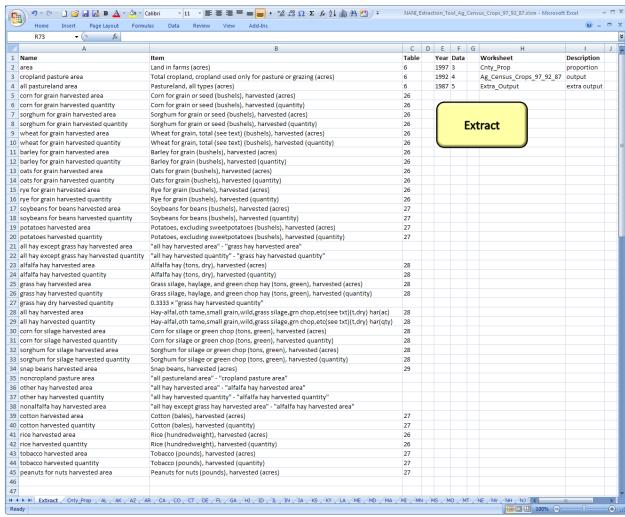


Figure 4.1.1.1. Extracting 1987, 1992, and 1997 crop data from Agricultural Census.

The extraction tool is implemented as a Microsoft Excel 2007 workbook (xlsm extension). Although the same tool may be implemented as the Microsoft Excel 97-2003 workbook (xls extension), Excel 2007 is more efficient in dealing with large datasets, and so is the version of choice for this application. To extract the 1987, 1992, and 1997 crop data from Agricultural Census, open the file "NANI_Extraction_Tool_Ag_Census_Crops_97_92_87.xlsm" with Excel 2007 (Figure 4.1.1.1.1). (Note that the 2002 and 2007 Agricultural Census data have a different structure and are extracted using a separate extraction tool, as described in Section 4.1.2.)

The first worksheet "Extract" contains a list of Agricultural Census items to be extracted. Although both the crop and animal items can be extracted using a single extraction tool, in this example only the crop items are extracted for the ease of organizing the extracted data. (The animal items are extracted using the same tool in Section 4.1.1.2.) Column A contains the user-specified names of the Agricultural Census items, and Columns B and C contain the full names and table numbers, respectively, that can be found in the Agricultural Census database. Note that some items are expressed as simple algebraic equations in Column B, for example "all hay harvested area" - "grass hay harvested area" (Cell B21). These items are not extracted from the Agricultural Census database but derived by combining multiple Agricultural Census items that can be found from the list. Calculation of the derived items is based on Boyer et al. (2002). Algebraic expressions that can be used by the user include:

- Addition or subtraction of multiple items: "+" or "-" (e.g., "a" + "b" "c")
- Multiplication of coefficient: "×" or "*" (e.g., 2 × "a" or 2 * "a")
- Minimum or maximum of two items: "MIN" or "MAX" (e.g., MIN: "a", "b")

Column E of the extraction worksheet contains a list of years for the extraction, and Column G specifies the column number where the data for each specified year can be found in the data worksheets (Figure 4.1.1.1.2).

Ca	リーセート	Ag_Census_Crops_9	97_92_87.xlsm - Mic	rosoft Excel	- 0	X
	Home Insert Page Layout Formulas Data Review View Add-Ins			(0 _ =	x
	H38 ▼					×
	A B	С	D	F	F	Ē
1	Census of Agriculture: 1987,1992,1997			_		É
2						ı
3	Table 1 County summary highlights: Alabama Total of					ı
4						ı
5	item	1997	1992	1987		ı
6	Farms (number)	41,384	37,905	43,318		ı
7	Land in farms (acres)	8,704,385	8,450,823	9,145,753		ı
8	Land in farms - average size of farm (acres)	210	223	211		П
9	Land in farms - median size of farm (acres)	81	(N)	(N)		П
10	Estimated market value of land and buildings@1: average per farm (dollars)	298,244	220,265	168,161		П
11	Estimated market value of land and buildings@1: average per acre (dollars)	1,442	1,000	800		ı
12	Estimated market value of all machinery/equipment@1:aver per farm (dollars)	35,914	30,354	25,831		ı
13	Farms by size: 1 to 9 acres	2,141	1,902	2,602		ı
14	Farms by size: 10 to 49 acres	11,854	10,165	12,356		ı
15	Farms by size: 50 to 179 acres	16,015	14,929	16,514		ı
16	Farms by size: 180 to 499 acres	7,561	7,162	7,776		ı
17	Farms by size: 500 to 999 acres	2,277	2,244	2,469		ı
18	Farms by size: 1,000 acres or more	1,536	1,503	1,601		ı
19	Total cropland (farms)	34,407	32,327	37,148		ı
20	Total cropland (acres)	4,197,670	4,237,057	4,496,607		ı
21	Total cropland, harvested cropland (farms)	24,819	24,780	28,509		
22	Total cropland, harvested cropland (acres)	2,077,139	2,104,064	2,231,623		
23	Irrigated land (farms)	1,301	1,380	1,344		П
24	Irrigated land (acres)	76,871	82,015	84,054		П
25	Market value of agricultural products sold (\$1,000)	3,098,989	2,369,179	1,908,303		
26	Market value of agricultural products sold, average per farm (dollars)	74,884	62,503	44,053		
27	Market value of ag prod sold-crops,incl nursery and greenhouse crops (\$1,000)	632,978	649,110	497,992		
28	Market value of ag products sold - livestock, poultry, and their products (\$1,000)	2,466,010	1,720,070	1,410,311		٧
14 4 >	H Extract Cnty_Prop AL AK AZ AR CA CO CT DE FL GA HI ID IL IN IA KS KY LA ME MD MA MI MN MS MO M	T / NE / NV / NH		0% 🕞	<u> </u>	
Ready			III [] [] 10	0%	+	

Figure 4.1.1.1.2. Worksheets containing 1987, 1992, and 1997 Agricultural Census data.

Columns H and I of the extraction worksheet are used to specify the names of the input and output worksheets. The user needs to specify the names of the input worksheet "proportion" (county proportion worksheet imported from the text file output created by the NANI-GIS tool described in Section 3.1; see Figure 3.1.5), and the output worksheets "output" (used as input to the NANI-accounting tool in Sections 5.1.1 and 5.2) and "extra output" (additional information that is not directly used by the NANI-accounting tool). The worksheets that follow the county proportion worksheet "Cnty_Prop" contain the Agricultural Census data downloaded from http://agcensus.mannlib.cornell.edu/ (Figure 4.1.1.1.3).

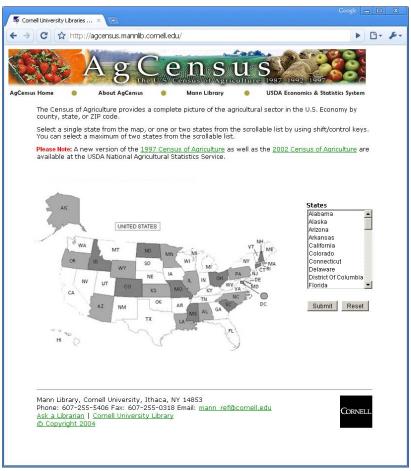


Figure 4.1.1.1.3. Agricultural Census data available at http://agcensus.mannlib.cornell.edu/.

The website provides Agricultural Census data in 1987, 1992, and 1997. To download the data, first select the state, click on "Submit Query", select counties of interest, click on "Submit Query" again, select tables of interest, and click on "Submit Query" again. After the relevant data are downloaded, they can be saved as an html file, which can then be imported into Microsoft Excel as shown in Figure 4.1.1.1.2. The extraction tool included in the toolbox package contains the entire Agricultural Census data downloaded from this website, each state stored in a separate worksheet. The original dataset available on the web had a number of issues and some modifications were needed before being used as input to the extraction tool:

- When the data for Arkansas County, Arkansas were downloaded, the Arkansas state data were provided instead of the county data.
- Sometimes the same item for the same county appeared twice, and when it appeared the second time, the reported value was incorrect. The current version of the extraction tool issues warning messages for the items that appear more than once, and the duplicated items are ignored.
- Data for Woodford County, Kentucky were missing.
- Pottawattamie County, Iowa was misspelled as "Pottawattami".

Data problems were fixed based on the original Agricultural Census publications (pdf files downloadable from http://www.agcensus.usda.gov/) before being used as input to the extraction tool. Adjustments were also made in the county names of the US county map (Figure 3.1.2) to resolve the misspelling and other county name discrepancy issues.

Before running the extraction tool, the user may replace the county proportion table and revise the list of Agricultural Census items as appropriate. Click on the "Extract" button in the extraction worksheet and the relevant data will be extracted and reported to the user-specified output worksheet, in this example "Ag_Census_Crops_97_92_87" (Figure 4.1.1.1.4).

	Home V41	Insert Page L	fx 531.63362675910	Data Review	View	Add-Ins									(0 − □
4	А	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р
	FIPS	STATE	COUNTY	Area_km2	area			cropland p	asture area		all pasture	land area		corn for gr	ain harves	ted area
					1997	1992	1987	1997	1992	1987	1997	1992	1987	1997	1992	198
	1009	Alabama	Blount	1691.637384	138509	137426	140107	40776	36989	33586	75088	68977	64020	1630	2925	129
	1033	Alabama	Colbert	1618.822017	115542	138135	145104	20462	20330	20137	40870	47769	47603	4712	4420	223
	1043	Alabama	Cullman	1947.917897	202861	196859	193771	58498	54781	40147	105663	100129	86498	4132	4199	317
	1049	Alabama	DeKalb	2015.203607	223685	210733	213440	58898	50875	40204	106385	93449	84279	16218	18285	1580
	1055	Alabama	Etowah	1425.590932	94970	85821	100517	22356	24200	18553	43531	43216	44764	1618	2430	152
	1059	Alabama	Franklin	1674.135201	128437	130063	127653	37905	34596	34910	70108	70235	62605	1219	3825	388
	1071	Alabama	Jackson	2924.789055	221166	204487	208014	42671	39314	32622	74531	71076	58058	21829	20567	1488
)	1077	Alabama	Lauderdale	1862.223221	211586	201892	199960	49584	44157	40651	86507	89144	80262	7097	6990	735
Ĺ	1079	Alabama	Lawrence	1861.593779	204970	173468	188365	44319	34666	30518	75331	61873	59159	8133	4859	336
2	1083	Alabama	Limestone	1571.777679	253889	207226	223190	34070	35511	28842	63900	64205	61381	8411	5484	692
3	1089	Alabama	Madison	2103.560677	210455	224370	235478	28153	32682	27792	48308	64999	55018	15038	14356	1223
1	1093	Alabama	Marion	1922.37775	98078	89228	105586	22081	18710	19234	39713	37379	44893	3820	5160	417
5	1095	Alabama	Marshall	1617.892514	146129	142873	136599	37907	34422	28180	70295	62666	53703	6999	12999	388
5	1103	Alabama	Morgan	1550.475131	158711	155914	159757	39945	36695	34521	69811	68256	64082	5901	3007	280
7	1133	Alabama	Winston	1636.583993	59090	56680	57923	17237	15959	12793	31831	28166	29673	124	436	42
3	5001	Arkansas	Arkansas	2677.20574	426363	411473	454783	3502	3184	5353	10229	8834	22503	5955	6078	481
9	5003	Arkansas	Ashley	2427.04668	165826	151325	154580	3809	5132	6387	11423	9220	15648	1112	94.23127	13
0	5005	Arkansas	Baxter	1511.382962	105323	92708	103034	28662	25405	28945	76284	67622	76372	33.65451	57.73	63.336
1	5007	Arkansas	Benton	2263.578146	296543	293745	302659	84164	94551	90374	173589	179073	179833	402	431	17
2	5009	Arkansas	Boone	1557.487076	257698	250819	242099	86643	83577	76181	197572	189104	184526	82.34383	156.187	148.822
3	5011	Arkansas	Bradley	1695.439372	28900	30196	31795	6681	8327	6744	11909	13119	12847	9.234595	18.80329	19.5449
4	5013	Arkansas	Calhoun	1633.153941	17622	18818	19659	6182	4320	5181	8949	8460	10829	53	11.71812	4
5	5015	Arkansas	Carroll	1649.734483	242482	246184	240838	67180	77052	73206	167432	175688	174712	77.48177	153.3007	148.047
5	5017	Arkansas	Chicot	1788.175375	287962	269122	320847	8705	6589	5534	15905	12846	9890	3092	1244	108
7	5019	Arkansas	Clark	2283.672168	96301	98919	114391	21774	18797	17443	43303	42226	47804	1032	1718	51
3	5021	Arkansas	Clay	1649.713617	323578	313573	309939	8795	9119	8197	19707	17725	21504	27906	15523	750

Figure 4.1.1.1.4. The 1987, 1992, and 1997 crop data extracted using NANI-extraction tool.

In the original Agricultural Census data (Figure 4.1.1.1.2), the "(D)" and "(N)" represent "withheld to avoid disclosing data for individual farms" and "not available", respectively. The current extraction tool allows the user to estimate the values of missing or withheld items. Following the guidelines described in Chinkin et al. (2003), the toolbox estimates the items withheld at the county level by calculating the difference between the value for the state

(reported in Agricultural Census) and the total for the counties where the item of interest is not withheld, and apportioning the difference to each of the withheld counties in proportion to the variable of the user's choice that can be found in the Agricultural Census. The variable used for apportioning must be specified as the first item of the list given in the "Extract" worksheet, in this example "Land in farms (acres)" with the user-specified item name "area" (Figure 4.1.1.1.1). In case where the state data are withheld, they are estimated by applying the same procedure using the value for the US (again reported in Agricultural Census).

The "N/A" in the output worksheet is noted by the extraction tool, indicating that the item is not found from the database at the specified county. The Agricultural Census data are not reported in some counties such as District of Columbia and "independent cities" (e.g., Buena Vista) in Virginia, although the Census data (e.g., population) may be reported in those counties. Any missing, incomplete, or inaccurate items may be modified by the user at this stage before being used as input to the NANI-accounting tool (Section 5), if auxiliary data exist.

There is a number of additional information reported to the "extra output" worksheet, in this example "Extra_Output" (Figure 4.1.1.1.5), that may be useful for checking calculations or other purposes.

	Home	Insert	Page L	ayout Formul	as Data	Review	/ View	Add-Ins							(⊘ – □
	T38	~		<i>f</i> _∞ 25499												
4	Α	В	С	D	Е	F	G	Н	1	J	K	L	M	N	0	Р
1	US			Area_km2	area			cropland p	asture are	a	all pasture	land area		corn for gr	ain harves	ted area
2	(Extracted)			1997	1992	1987	1997	1992	1987	1997	1992	1987	1997	1992	198
3	United Sta	tes		5317106.197	9.32E+08	9.46E+08	9.64E+08	64466542	66806427	64979914	4.91E+08	5.14E+08	5.16E+08	69796716	69339869	5870150
4																
5	US			Area_km2	area			cropland p	asture are	a	all pasture	land area		corn for gr	ain harves	ted area
6	(State Sum	1)			1997	1992	1987	1997	1992	1987	1997	1992	1987	1997	1992	198
7	United Sta	tes		5317106.197	9.32E+08	9.46E+08	9.64E+08	64466542	66806427	64979914	4.91E+08	5.14E+08	5.16E+08	69796716	69339869	5870150
8																
9	US			Area_km2	area			cropland p	asture are	a	all pasture	land area		corn for gr	ain harves	ted area
10	(County Su	ım for Wit	hheld Sta	ates)	1997	1992	1987	1997	1992	1987	1997	1992	1987	1997	1992	198
11	United Sta	tes		5317106.197	0	0	0	0	0	0	0	0	0	0	0	
12																
13	US			Area_km2	area			cropland p	asture are	a	all pasture	land area		corn for gr	ain harves	ted area
14	(State Wit	hheld Are	a Sum)		1997	1992	1987	1997	1992	1987	1997	1992	1987	1997	1992	198
15	United Sta	tes		5317106.197	0	0	0	0	0	0	0	0	0	2320116	11775564	274825
16																
17	STATE			Area_km2	area			cropland p	asture are	a	all pasture	land area		corn for gr	ain harves	ted area
18	(Extracted)			1997	1992	1987	1997	1992	1987	1997	1992	1987	1997	1992	198
19	Alabama			27424.58084	8704385	8450823	9145753	1588367	1534509	1455779	3452167	3558879	3719360	230484	281053	23466
20	Arkansas			137690.9043	14364955	14127711	14355611	2008011	2066668	1937919	4451573	4495739	4554218	184079	94606	5367
21	California			382330.5615	27698779	28978997	30598178	1246009	1226708	1337713	16276128	18104130	19257107	256292	148616	15632
22	Colorado			191332.621	32634221	33983029	34048433	700536	1177198	1170250	21326132	23429037	23269684	919784	891720	68556
23	Connectic	ut		7690.433974	359313	358743	398400	27414	33391	39579	62603	71387	87182	5460	5357	395
24	District of	Columbia		155.9362159	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
25	Georgia			90303.7508	10671246	10025581	10744718	1083321	1187114	1144970	2537199	2761073	2914882	404268	647833	54849
26	Idaho			213129.7426	11830167	13468992	13931875	816471	814777	816308	5762204	7518549	7321525	41162	38069	4749
27	Illinois			146030.1255	27204780	27250340	28526664	825653	903169	1021288	1928422	2100282	2359751	10710072	10770985	916271
28	Indiana			93755.2575	15111022	15618831	16170895	621266	704953	746649	1254525	1416719	1581198	5473792	5828308	488411
29	Iowa			145846.1104	31166699	31346565	31638130	2001198	2193779	2283547	4075192	4357648	4510771	11595308	12512815	1014705
30	Kansas			213123.3925	46089268	46672188	46628519	3434056	3814520	3485445	17816204	17900339	17105675	2497516	1748802	124396
31	Kentucky			104525.0942	13334234	13665798	14012700	3101480	3454282	3402205	5138393	5503774	5687274	1086381	1166234	104880
32	Louisiana			62524.22108	7876528	7837545	8007173	840581	876372	828707	2159520	2258680	2278894	411072	269642	18977
33	Maine			81228.73788	1211648	1258297	1342588	65066	73085	87487	133292	153714	183329	3604	2739	534
34	Maryland			10290.56237	2154875	2223476	2396629	148667	169363	189466	287215	320076	364474	405451	454083	43240
					518299	526440	615185	39471	45142	52884	83848	96070	133627	4951	4893	

Figure 4.1.1.1.5. Extra output generated while extracting 1987, 1992, and 1997 crop data.

The tables generated in the extra output worksheet include (in the order of appearance):

- US values extracted from the original Agricultural Census database (before the withheld are estimated).
- US total for the states where the item of interest is not withheld.
- Sum of the values for the counties where the item of interest is withheld in their states.
- Sum of the "area" values for the withheld states.
- State values extracted from the original Agricultural Census database (before the withheld are estimated).
- State values with the withheld data estimated following the procedure described in this section (Chinkin et al. 2003).
- State total for the counties where the item of interest is not withheld. (The "all other counties", if exist, are excluded.)
- Values for the "all other counties", if exist.
- Sum of the "area" values for the withheld counties.
- County values extracted from the original Agricultural Census database (before the withheld are estimated).

After the crop data are extracted from the Agricultural Census database, they can be used as input to the NANI-accounting tool calculating crop N production (Section 5.1.1) and agricultural N fixation (Section 5.2).

4.1.1.2. Extracting Animal Data

In this section, the animal inventory and sales data in 1987, 1992, and 1997 are extracted from the Agricultural Census database (downloaded from the Internet and stored in the form of its original structure) and organized into a format suitable as input to the NANI-accounting tools (Section 5) using one of the NANI-extraction tools included in the toolbox package "NANI_Extraction_Tool_Ag_Census_Animals_97_92_87.xlsm" (Figure 4.1.1.2.1). Note that it is the same extraction tool as "NANI_Extraction_Tool_Ag_Census_Crops_97_92_87.xlsm" described in Section 4.1.1.1, except for the list of items to be extracted. It is possible to extract the crop and animal data in a single run, although in this example they are extracted separately for the data organization purpose. Detailed descriptions on the specification of the extraction tool, input data structure, and output worksheets are given in Section 4.1.1.1.

To extract the 1987, 1992, and 1997 animal data from Agricultural Census, open the file "NANI_Extraction_Tool_Ag_Census_Animals_97_92_87.xlsm" with Excel 2007 (Figure 4.1.1.2.1). Before running the extraction tool, the user may replace the county proportion table and revise the list of Agricultural Census items as appropriate. Calculation of the derived items shown in Figure 4.1.1.2.1 is based on Kellogg et al. (2000) and Boyer et al. (2002). Click on the "Extract" button in the extraction worksheet and the relevant data will be extracted and reported to the user-specified output worksheet, in this example "Ag_Census_Animals_97_92_87" (Figure 4.1.1.2.2).

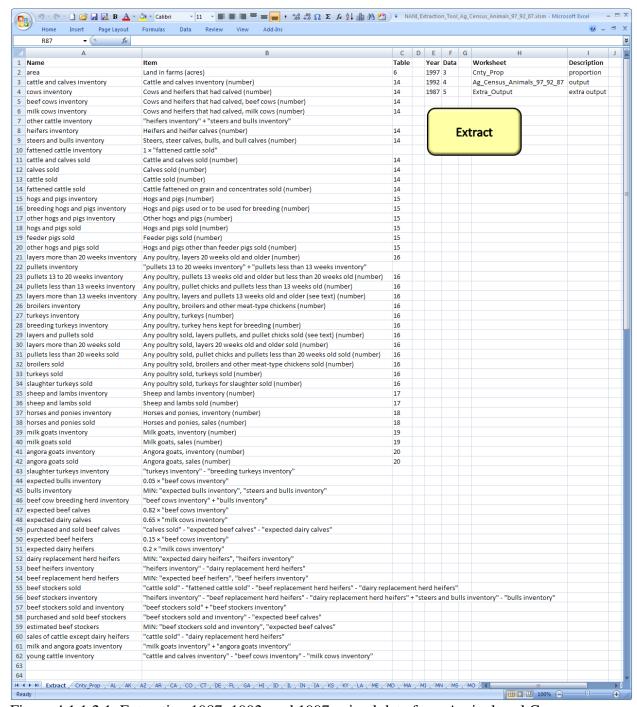


Figure 4.1.1.2.1. Extracting 1987, 1992, and 1997 animal data from Agricultural Census.

There is also a number of additional information reported to the "extra output" worksheet, in this example "Extra_Output" (Figure 4.1.1.2.3), that may be useful for checking calculations or other purposes. The list of tables generated in the extra output worksheet is given in Section 4.1.1.1. After the animal data are extracted from the Agricultural Census database, they can be used as input to the NANI-accounting tool calculating animal N production and animal N consumption (Section 5.1.2).

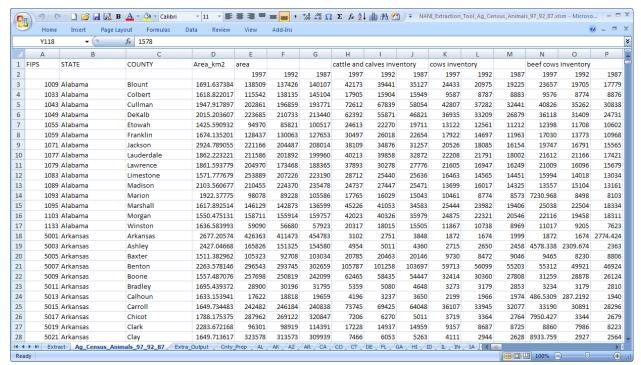


Figure 4.1.1.2.2. The 1987, 1992, and 1997 animal data extracted using NANI-extraction tool.



Figure 4.1.1.2.3. Extra output generated while extracting 1987, 1992, and 1997 animal data.

4.1.2. Extracting 2002 and 2007 Data

4.1.2.1. Extracting Crop Data

In this section, the harvested crop areas and quantities in 2002 and 2007 are extracted from the Agricultural Census database (downloaded from the Internet and stored in the form of its original structure) and organized into a format suitable as input to the NANI-accounting tools (Section 5) using one of the NANI-extraction tools included in the toolbox package "NANI_Extraction_Tool_Ag_Census_Crops_07_02.xlsm" (Figure 4.1.2.1.1).

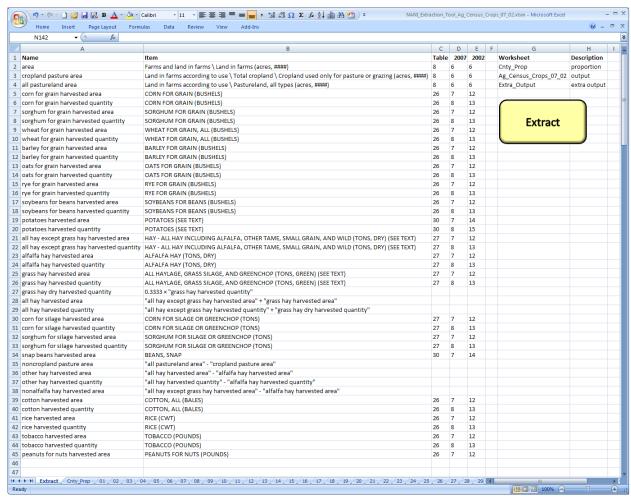


Figure 4.1.2.1.1. Extracting 2002 and 2007 crop data from Agricultural Census.

Although the general extraction procedure applied is similar to that described in Section 4.1.1.1 (extracting the 1987, 1992, and 1997 crop data), the Agricultural Census database downloaded from the Internet has a different data structure, hence requiring a separate extraction tool. To extract the 2002 and 2007 crop data from Agricultural Census, open the file "NANI_Extraction_Tool_Ag_Census_Crops_07_02.xlsm" with Excel 2007 (Figure 4.1.2.1.1).

The first worksheet "Extract" contains a list of Agricultural Census items to be extracted. Although both the crop and animal items can be extracted using a single extraction tool, in this example only the crop items are extracted for the ease of organizing the extracted data. (The animal items are extracted using the same tool in Section 4.1.2.2.) Column A contains the user-specified names of the Agricultural Census items. These names are identical to those listed in Section 4.1.1.1 (Figure 4.1.1.1.1), and should be consistent throughout the analysis. Columns B and C contain the full names and table numbers, respectively, that can be found in the Agricultural Census database. (The "####" in the item name is replaced with the year number by the extraction tool.) Columns D and E specify the column numbers where the data for each specified year can be found in the data worksheets (Figure 4.1.2.1.2).

3)	Home	Inse	it Pa	B A → 🖎 → Calii ige Layout Formulas		Add-Ins	00 ≯.0 ∆2 ∠	J× Z↓ [[[]]	AA 😬) ₹	IVA	NI_Extraction_1	ooi_Ag_cens	us_crops_o/_c	DZ.XISIII - IVIICI		
	T54		▼ (9	f_{x}												
4	Α	В	С	D	E	F	G	Н	- 1	J	K	L	M	N	0	Р
						2007	2007	2007	2007	2007	2002	2002	2002	2002	2002	
									_	Irrigated	Harvested	Harvested			Irrigated	
	COFIPS				ITEM	Farms			Farms	Acres	Farms	Acres		Farms	Acres	
	16000	16		Idaho	AUSTRIAN WINTER PEAS (CWT)	18	4806	61837	1	(D)	60	7885			(D)	
	16011	16		Idaho\Bingham	AUSTRIAN WINTER PEAS (CWT)		-	-	-	-		(D)	(D)	1	. (D)	
	16019	16		Idaho\Bonneville	AUSTRIAN WINTER PEAS (CWT)		-	-	-	-	1	(D)	(D)	-	-	
	16021	16		Idaho\Boundary	AUSTRIAN WINTER PEAS (CWT)			(D)	-	-	-	-	-	-	-	
	16035	16		Idaho\Clearwater	AUSTRIAN WINTER PEAS (CWT)		(D)	(D)	-	-		(D)	(D)	-	-	
	16043	16		Idaho\Fremont	AUSTRIAN WINTER PEAS (CWT)		-	-	-	-		(D)	(D)	-	-	
	16049	16		Idaho\Idaho	AUSTRIAN WINTER PEAS (CWT)			(D)	-	-	16	1294	23508	-	-	
	16051	16			AUSTRIAN WINTER PEAS (CWT)			(D)	1	(D)	-	-	-	-	-	
	16057	16		Idaho\Latah	AUSTRIAN WINTER PEAS (CWT)			(D)	-	-	7				-	
	16061	16		Idaho\Lewis	AUSTRIAN WINTER PEAS (CWT)	8	3536	39921	-	-	13	2234			-	
	16067	16		Idaho\Minidoka	AUSTRIAN WINTER PEAS (CWT)	-	-	-	-	-	1	(D)	(D)	1	. (D)	
	16069	16	69	Idaho\Nez Perce	AUSTRIAN WINTER PEAS (CWT)	4			-	-	19	3653	67681	-	-	
	27000	27		Minnesota	AUSTRIAN WINTER PEAS (CWT)	2		(D)	-	-	-	-	-	-	-	
	27171	27	171	Minnesota\Wright	AUSTRIAN WINTER PEAS (CWT)	2	(D)	(D)	-	-	-	-	-	-	-	
	30000	30		Montana	AUSTRIAN WINTER PEAS (CWT)	27			3	141	1 29	3392	24605	3	360	
	30003	30		Montana\Big Horn	AUSTRIAN WINTER PEAS (CWT)	1	(D)	(D)	-	-	-	-	-	-	-	
	30005	30		Montana\Blaine	AUSTRIAN WINTER PEAS (CWT)		-	-	-	-	1	(D)	(D)	-	-	
	30011	30	11	Montana\Carter	AUSTRIAN WINTER PEAS (CWT)	-	-	-	-	-	1	(D)	(D)	-	-	
)	30013	30	13	Montana\Cascade	AUSTRIAN WINTER PEAS (CWT)	3	(D)	(D)	1	(D)	-	-	-	-	-	
L	30015	30			AUSTRIAN WINTER PEAS (CWT)	1	(D)	(D)	-	-		(D)	(D)	-	-	
!	30019	30		Montana\Daniels	AUSTRIAN WINTER PEAS (CWT)		-	-	-	-	2	(D)	(D)	-	-	
	30021	30			AUSTRIAN WINTER PEAS (CWT)	2	(D)	(D)	-	-	3	905	(D)	-	-	
Į.	30025	30	25	Montana\Fallon	AUSTRIAN WINTER PEAS (CWT)	1	(D)	(D)	-	-	-	-	-	-	-	
	30029	30	29	Montana\Flathead	AUSTRIAN WINTER PEAS (CWT)	1	(D)	(D)	1	(D)	-	-	-	-	-	
	30031	30	31	Montana\Gallatin	AUSTRIAN WINTER PEAS (CWT)	-	-	-	-	-	1	(D)	(D)	-	-	
•	▶I Extra	act / Cr	nty_Prop	/01 /02 /03 /04 /	05 / 06 / 07 / 08 / 09 / 10 / 11	/ 12 / 13	14 / 15 / 1	16 / 17 / 18	/ 19 / 20	21 / 22 /	23 / 24 / 25	26 / 27	28 / 29 / 3	30 4	Ш	

Figure 4.1.2.1.2. Worksheets containing 2002 and 2007 Agricultural Census data.

Note that some items are expressed as simple algebraic equations in Column B of the extraction worksheet (Figure 4.1.2.1.1), for example $0.3333 \times$ "grass hay harvested quantity" (Cell B27). These items are not extracted from the Agricultural Census database but derived by combining multiple Agricultural Census items that can be found from the list (see Section 4.1.1.1 for more detail). Calculation of the derived items is based on Boyer et al. (2002). Cells D1 and E1 are used to specify the years for the extraction, and can be extended further as the data for the new years are added. Columns G and H are used to specify the names of the input and output worksheets. The user needs to specify the names of the input worksheet "proportion" (county proportion worksheet imported from the text file output created by the NANI-GIS tool described in Section 3.1; see Figure 3.1.5), and the output worksheets "output" (used as input to the NANI-accounting tool in Sections 5.1.1 and 5.2) and "extra output" (additional information that is not directly used by the NANI-accounting tool).

The worksheets that follow the county proportion worksheet "Cnty_Prop" contain the Agricultural Census data obtained using the Desktop Data Query Tool (Figure 4.1.2.1.3), that can be downloaded via http://www.agcensus.usda.gov/, along with the user's manual.

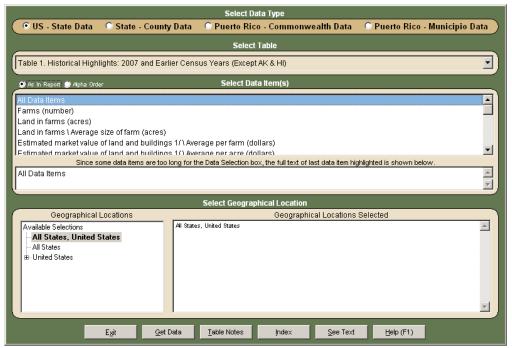


Figure 4.1.2.1.3. Desktop Data Query Tool generating 2007 and 2002 Agricultural Census data.

The extraction tool included in the toolbox package contains the entire Agricultural Census data obtained using the Desktop Data Query Tool, each Agricultural Census table stored in a separate worksheet (e.g., Figure 4.1.2.1.2 showing Agricultural Census table 26). The original dataset obtained using the Desktop Data Query Tool had a number of issues and some modifications were needed before being used as input to the extraction tool:

- The horses, milk goats, and angora goats are not reported in the year of 2002. These items are manually added to the worksheet tables using the original Agricultural Census publications (pdf files downloadable from http://www.agcensus.usda.gov/).
- Unlike the 1987-1997 Agricultural Census data (Figure 4.1.1.1.3), data for the potatoes are not generated in cwt (hundredweight). These data are either added manually from the 2002 Agricultural Census publications or estimated from the 2007 NASS (National Agricultural Statistics Service; http://www.nass.usda.gov/) data for potatoes.

Before running the extraction tool, the user may replace the county proportion table and revise the list of Agricultural Census items as appropriate. Click on the "Extract" button in the extraction worksheet and the relevant data will be extracted and reported to the user-specified output worksheet, in this example "Ag_Census_Crops_07_02" (Figure 4.1.2.1.4).

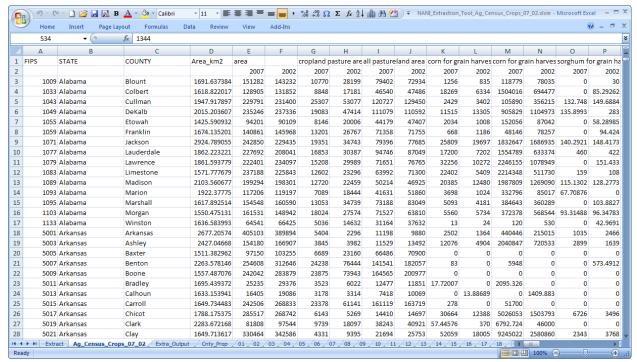


Figure 4.1.2.1.4. The 2002 and 2007 crop data extracted using NANI-extraction tool.

There is a number of additional information reported to the "extra output" worksheet, in this example "Extra_Output" (Figure 4.1.2.1.5), that may be useful for checking calculations or other purposes.

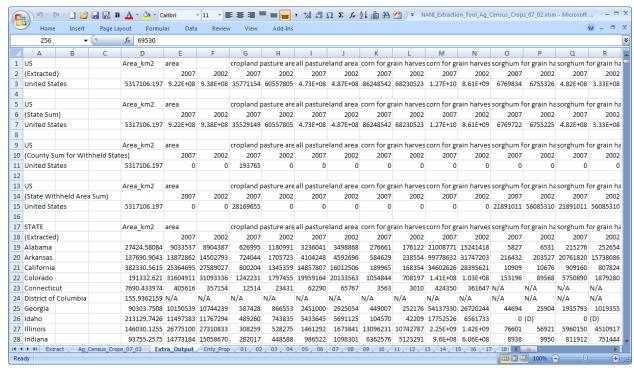


Figure 4.1.2.1.5. Extra output generated while extracting 2002 and 2007 crop data.

Detailed description on the output worksheets generated by the extraction tools is given in Section 4.1.1.1. After the crop data are extracted from the Agricultural Census database, they can be used as input to the NANI-accounting tool calculating crop N production (Section 5.1.1) and agricultural N fixation (Section 5.2).

4.1.2.2. Extracting Animal Data

In this section, the animal inventory and sales data in 2002 and 2007 are extracted from the Agricultural Census database (downloaded from the Internet and stored in the form of its original structure) and organized into a format suitable as input to the NANI-accounting tools (Section 5) using one of the NANI-extraction tools included in the toolbox package "NANI_Extraction_Tool_Ag_Census_Animals_07_02.xlsm" (Figure 4.1.2.2.1).

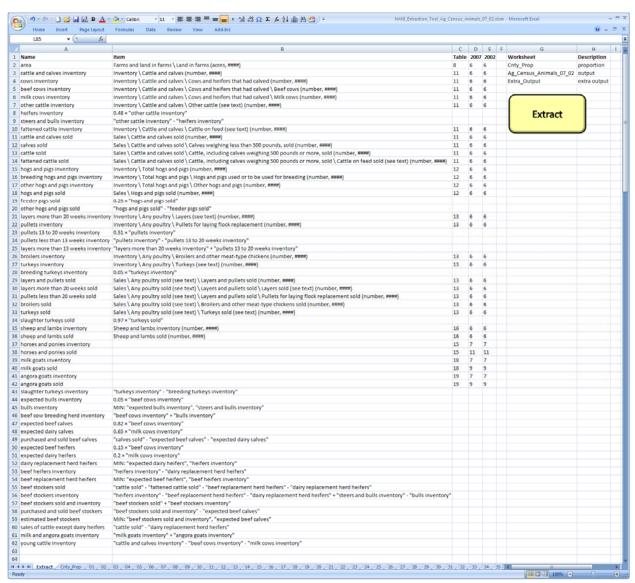


Figure 4.1.2.2.1. Extracting 2002 and 2007 animal data from Agricultural Census.

Note that, except for the list of items to be extracted, this file is the same extraction tool as "NANI_Extraction_Tool_Ag_Census_Crops_07_02.xlsm" described in Section 4.1.2.1. It is possible to extract the crop and animal data in a single run, although in this example they are extracted separately for the data organization purpose. Detailed descriptions on the specification of the extraction tool, input data structure, and output worksheets are given in Section 4.1.1.1.

To extract the 2002 and 2007 animal data from Agricultural Census, open the file "NANI_Extraction_Tool_Ag_Census_Animals_07_02.xlsm" with Excel 2007 (Figure 4.1.2.2.1). Before running the extraction tool, the user may replace the county proportion table and revise the list of Agricultural Census items as appropriate. Calculation of the derived items shown in Figure 4.1.2.2.1 is based on Kellogg et al. (2000) and Boyer et al. (2002). Click on the "Extract" button in the extraction worksheet and the relevant data will be extracted and reported to the user-specified output worksheet, in this example "Ag_Census_Animals_07_02" (Figure 4.1.2.2.2).

	Home		e Layout Formulas	Data Review	View	Add-Ins							(
4	R35	▼ (<u>o</u>	<i>f</i> _x 109.44 C	D	Е	F	G	Н	1	1	К	1	M	N
	FIPS	STATE	COUNTY		area		_		cows inver	,		-	milk cows	
ľ	IFS	JIAIL	COONT	Alea_Kiliz	2007	2002	2007	2002	2007	2002	2007	2002	2007	200
	1009	Alabama	Blount	1691.637384	151282	143232	33440	38699	20227	21827	10696.53	21348		4
		Alabama	Colbert	1618.822017	128905	131852	14140	16307	8827	9280			179.1935	
		Alabama	Cullman	1947.917897	229791	231400	65275	76141	38971	40980	37420	39018	1551	19
	1049	Alabama	DeKalb	2015.203607	235246	237336	56530	65618	35962	36025	16633.29	35464	327.0202	5
T	1055	Alabama	Etowah	1425.590932	94201	90109	16016	21640	9630	12366	9435	12020	195	3
3	1059	Alabama	Franklin	1674.135201	140861	145968	23977	26456	15556	15510	15556	11869.99	0	232.25
)	1071	Alabama	Jackson	2924.789055	242850	229435	32991	38373	18666	21494	17170.93	18657.46	337.5907	365.06
0	1077	Alabama	Lauderdale	1862.223221	227692	208041	30334	34065	17823	19723	17823	16917.72	0	331.02
1	1079	Alabama	Lawrence	1861.593779	222401	234097	25238	38958	15471	20905	15448	20635	23	2
2	1083	Alabama	Limestone	1571.777679	237188	225843	20793	27858	12679	15417	16770.6	15195	329.7199	2
3	1089	Alabama	Madison	2103.560677	199294	198301	20080	21853	11851	12581	11772	12406	79	1
4	1093	Alabama	Marion	1922.37775	117206	119197	14497	17117	8768	9925	8768	9915	0	
5	1095	Alabama	Marshall	1617.892514	154548	160590	37567	47150	23736	27048	23732	13059.04	4	255.52
6	1103	Alabama	Morgan	1550.475131	161531	148942	32697	36360	19996	20423	18571	18937	1425	14
7	1133	Alabama	Winston	1636.583993	64541	66425	12888	21981	7971	10224	4563.431	9993	89.71976	2
8	5001	Arkansas	Arkansas	2677.20574	405103	389894	1912	2809	1273	1290	1273	1290	0	
9	5003	Arkansas	Ashley	2427.04668	154180	166907	3818	4545	2235	2669	2235	9258.913	0	106.24
0	5005	Arkansas	Baxter	1511.382962	97150	103255	21217	21259	10075	10109	10075	9878	0	2
1	5007	Arkansas	Benton	2263.578146	254608	312646	94588	113588	54779	64383	52148	60948	2631	34
2	5009	Arkansas	Boone	1557.487076	242042	283879	62565	72550	31814	33593	31629	32657	185	9
3	5011	Arkansas	Bradley	1695.439372	25235	29376	4209	5071	2752	3387	2752	1629.589	0	18.699
4	5013	Arkansas	Calhoun	1633.153941	16405	19086	1631	3669	915	2104	915	2104	0	
5	5015	Arkansas	Carroll	1649.734483	242506	268833	69749	74989	38704	37259	37604	35753	1100	150
5	5017	Arkansas	Chicot	1788.175375	285517	268742	3585	7072	2012	3206	2012	3206	0	
7	5019	Arkansas	Clark	2283.672168	81808	97544	12853	14250	8236	7723	9167.74	5411.105	79.79629	62.091
8	5021	Arkansas	Clay	1649.713617	330464	342586	7763	9608	4458	4927	4458	4927	0	

Figure 4.1.2.2.2. The 2002 and 2007 animal data extracted using NANI-extraction tool.

There is also a number of additional information reported to the "extra output" worksheet, in this example "Extra_Output" (Figure 4.1.2.2.3), that may be useful for checking calculations or other purposes. The list of tables generated in the extra output worksheet is given in Section 4.1.1.1. After the animal data are extracted from the Agricultural Census database, they can be used as input to the NANI-accounting tool calculating animal N production and animal N consumption (Section 5.1.2).

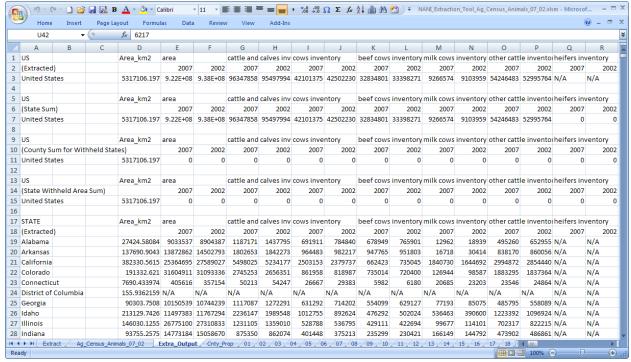


Figure 4.1.2.2.3. Extra output generated while extracting 2002 and 2007 animal data.

4.2. Extracting Census Data

The Census data are used to estimate the population density, which in turn is used to calculate the human N consumption. In this section, the 1990 and 2000 population data are extracted from the Census database (downloaded from the Internet and stored in the form of its original structure) and organized into a format suitable as input to the NANI-accounting tools (Section 5) using one of the NANI-extraction tools included in the toolbox package "NANI_Extraction_Tool_Census.xlsm" (Figure 4.2.1).

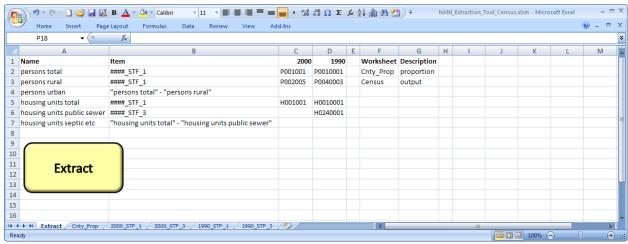


Figure 4.2.1. Extracting 1990 and 2000 population data from Census.

To extract the 1990 and 2000 population data (and other relevant items) from Census, open the file "NANI_Extraction_Tool_Census.xlsm" with Excel 2007 (Figure 4.2.1). The first worksheet "Extract" contains a list of Census items to be extracted. Column A contains the user-specified names of the Census items, and Column B contains the names of the worksheets where the desired Census item can be found. (The "####" in the worksheet name is replaced with the year number by the extraction tool.) Columns C and D specify the column headings where the data for each specified year can be found in the data worksheets (Figure 4.2.2).

Home Inse		Formulas Data	Review View Add-	Ins				∅ - □
N48	▼ (f _x 2.5	55						
A	В	С	D	Е	F	G	Н	The second
GEO_ID	GEO_ID2	SUMLEVEL	GEO_NAME	P001001	P002001	P002002	P002003	P002004
Geography Identifie	r Geography Identifier	Geographic Summary Level	Geography	Total population: Total	Total population: Total	Total population: Urban	Total population: Inside urbanized areas	Total population: Inside urban clusters
05000US01001	01001	050	Autauga County, Alabama	43671	43671	24101	0	2410
05000US01003	01003	050	Baldwin County, Alabama	140415	140415	64337	1908	624
05000US01005	01005	050	Barbour County, Alabama	29038	29038	8280	0	82
05000US01007	01007	050	Bibb County, Alabama	20826	20826	3863	0	38
05000US01009	01009	050	Blount County, Alabama	51024	51024	4578	0	45
05000US01011	01011	050	Bullock County, Alabama	11714	11714	4139	0	41
05000US01013	01013	050	Butler County, Alabama	21399	21399	5388	0	53
05000US01015	01015	050	Calhoun County, Alabama	112249	112249	77476	73344	41
05000US01017	01017	050	Chambers County, Alabama	36583	36583	18374	0	183
05000US01019	01019	050	Cherokee County, Alabama	23988	23988	0	0	
05000US01021	01021	050	Chilton County, Alabama	39593	39593	4765	0	47
05000US01023	01023	050	Choctaw County, Alabama	15922	15922	0	0	
05000US01025	01025	050	Clarke County, Alabama	27867	27867	7090	0	70
05000US01027	01027	050	Clay County, Alabama	14254	14254	0	0	
05000US01029	01029	050	Cleburne County, Alabama	14123	14123	0	0	
05000US01031	01031	050	Coffee County, Alabama	43615	43615	19224	0	192
05000US01033	01033	050	Colbert County, Alabama	54984	54984	29211	28823	3
05000US01035	01035	050	Conecuh County, Alabama	14089	14089	0	0	
1 05000US01037	01037	050	Coosa County, Alabama	12202	12202	317	0	3
05000US01039	01039	050	Covington County, Alabama	37631	37631	10526	0	105
05000US01041	01041	050	Crenshaw County, Alabama	13665	13665	0	0	
05000US01043	01043	050	Cullman County, Alabama	77483	77483	18808	0	188
05000US01045	01045	050	Dale County, Alabama	49129	49129	21839	2787	190
5 05000US01047	01047	050	Dallas County, Alabama	46365	46365	24775	0	247
7 05000US01049	01049	050	DeKalb County, Alabama	64452	64452	7533	0	75
05000US01051	01051	050	Elmore County, Alabama	65874	65874	25069	0	250
05000US01053	01053	050	Escambia County, Alabama	38440	38440	14842	0	148
05000US01055	01055	050	Etowah County, Alabama	103459	103459	62283	61709	5
05000US01057	01057	050	Fayette County, Alabama	18495	18495	3948	0	39
05000US01059	01059	050	Franklin County, Alabama	31223	31223	8763	0	87

Figure 4.2.2. Worksheets containing 1990 and 2000 Census data.

Note that some worksheet names are expressed as simple algebraic equations in Column B of the extraction worksheet (Figure 4.2.1), for example "persons total" - "persons rural" (Cell B4). These items are not extracted from the Census database but derived by combining multiple Census items that can be found from the list (see Section 4.1.1.1 for more detail). Cells C1 and D1 are used to specify the years for the extraction, and can be extended further as the data for the new years are added. Columns F and G are used to specify the names of the input and output worksheets. The user needs to specify the names of the input worksheet "proportion" (county proportion worksheet imported from the text file output created by the NANI-GIS tool described in Section 3.1; see Figure 3.1.5), and the output worksheet "output" (used as input to the NANI-accounting tool in Sections 5.1.3).

The worksheets that follow the county proportion worksheet "Cnty_Prop" contain the Census data downloaded from the American FactFinder Data Sets webpage (Figure 4.2.3; start from http://www.census.gov/ and click on "American FactFinder", "Data Sets", and the desired Census year).

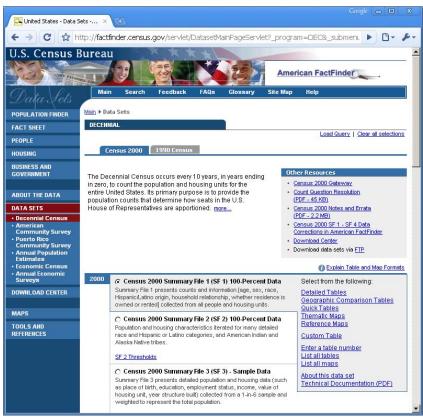


Figure 4.2.3. American FactFinder Data Sets webpage for downloading Census data.

The "Summary Tape File 1" (STF 1) reports values based on 100 percent of the data (e.g., total population), and the "Summary Tape File 3" (STF 3) reports values based on sampled data (e.g., sewered and unsewered housing units). To download the data, first select either "STF 1" or "STF 3", click on "Detailed Tables," select "County" as a geographic type, select the state of interest and add all counties for the state. Counties from more than one state can be added in this way. After all counties are added, select "Next" to choose the Census items of interest. The selected items can be downloaded in a Microsoft Excel format and imported directly into the extraction tool (Figure 4.2.2). The Census items that are downloaded in this way and currently available for extraction include:

- Total population
- Urban and rural (total population)
- Households
- Population in households
- Average household size

- Housing units
- Urban and rural (housing units)
- Occupancy status (housing units)
- Tenure (occupied housing units)
- Vacancy status (vacant housing units)
- Total population in occupied housing units
- Household size (occupied housing units)
- Plumbing facilities
- Sewage disposal

Before running the extraction tool, the user may replace the county proportion table and revise the list of Census items as appropriate. Click on the "Extract" button in the extraction worksheet and the relevant data will be extracted and reported to the user-specified output worksheet, in this example "Census" (Figure 4.2.4). Any missing, incomplete, or inaccurate items may be modified by the user at this stage before being used as input to the NANI-accounting tool (Section 5), if auxiliary data exist.

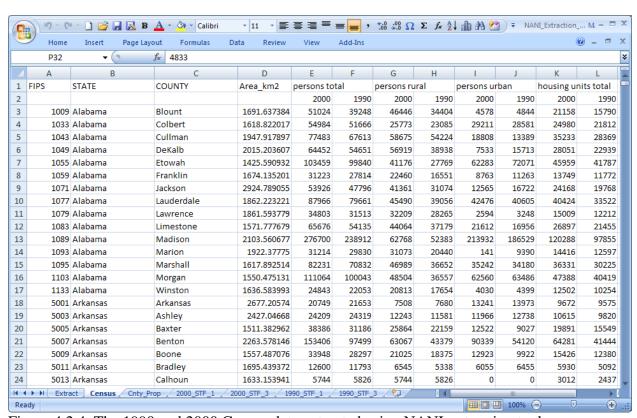


Figure 4.2.4. The 1990 and 2000 Census data extracted using NANI-extraction tool.

After the population data are extracted from the Census database, they can be used as input to the NANI-accounting tool calculating human N consumption (Section 5.1.3).

4.3. Extracting USGS Nutrient Input Estimates

County-level nutrient inputs were estimated by Ruddy et al. (2006) and available on the Internet at http://pubs.usgs.gov/sir/2006/5012/ (Figure 4.3.1). By clicking on the link "Nutrient-input data" at the bottom of the webpage, an Excel file containing the estimates of various nutrient inputs, including the annual fertilizer N application during the 1987-2001 periods, can be downloaded (Figure 4.3.2).

Figure 4.3.1. USGS website providing county-level estimates of nutrient inputs.

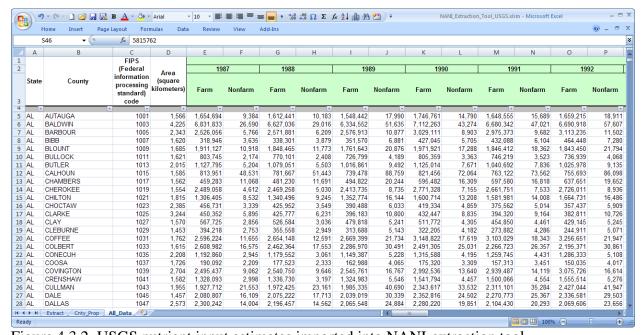


Figure 4.3.2. USGS nutrient input estimates imported into NANI-extraction tool.

These data are downloaded and imported into the "All_Data" worksheet of the NANI-extraction tool "NANI_Extraction_Tool_USGS.xlsm" (Figure 4.3.2) for extraction of county-level fertilizer N application, which in turn is used as input to the NANI-accounting tool (Section 5). To extract the fertilizer N application (and other relevant items) from USGS nutrient input estimates, open the file "NANI_Extraction_Tool_USGS.xlsm" with Excel 2007 (Figure 4.3.3).

•	Home Insert		• .00 .00 1-Ins	ΩΣ	E fx	â↓ ili	j AA (7	NANI_Extraction	n_Tool_USGS.xlsr	n - M	icrosoft Exc	cel -	:	x
	P24 ▼ (f _x													¥
	Α	В	С	D	Е	F	G	Н	I J	K	L	M	N		_
1	Name	Item	Category	2007	2002	1997	1992	1987	Workshe	et Description					П
2	ag fertilizer N	Nitrogen Input from Fertilizer Use (kilograms)	Farm	2001	2001				Cnty_Pro	proportion					Ш
3	non ag fertilizer N	Nitrogen Input from Fertilizer Use (kilograms)	Nonfarm	2001	2001				USGS	output					Ш
4	total fertilizer N	"ag fertilizer N" + "non ag fertilizer N"													Ш
5	confined manure N	Nitrogen Input from Livestock Manure (kilograms)	Confined												Ш
6	unconfined manure N	Nitrogen Input from Livestock Manure (kilograms)	Unconfined												Ш
7	total manure N	"confined manure N" + "unconfined manure N"													Ш
8	N deposition	Nitrogen Input from Atmospheric Deposition (kilograms)													
9															Ш
10 11 12 13	Extract														
14															
15															
16															
17															
18															v
14 -4		p / All_Data / 🖏 /			Ī	1									
Rea	dy									III II II 100)% ()		-	.::

Figure 4.3.3. Extracting USGS nutrient input estimates.

The first worksheet "Extract" contains a list of items to be extracted. Column A contains the user-specified names of the items, and Columns B and C contain the full names and the categories in which the items belong to (e.g., "Farm" or "Nonfarm" in Row 3 in Figure 4.3.2.), respectively, that can be found in the nutrient input data worksheet. Note that some item names are expressed as simple algebraic equations in Column B of the extraction worksheet, for example "ag fertilizer N" + "non ag fertilizer N" (Cell B4). These items are not extracted from the nutrient input data worksheet but derived by combining multiple items that can be found from the list (see Section 4.1.1.1 for more detail).

Columns D to H of the extraction worksheet contain a list of years for the extraction. If the cells in these columns are left blank, the desired items will be extracted from the corresponding years. If these cells have year numbers, the extraction will instead be made in the user-specified years (in Figure 4.3.3, for example, the values for the "ag fertilizer N" in 2002 and 2007 will be replaced with those in 2001). Cells D1 to H1 are used to specify the years for the extraction, and can be extended further as the data for the new years are added.

Columns J and K are used to specify the names of the input and output worksheets. The user needs to specify the names of the input worksheet "proportion" (county proportion worksheet imported from the text file output created by the NANI-GIS tool described in Section 3.1; see Figure 3.1.5), and the output worksheet "output" (used as input to the NANI-accounting tool in Section 5.3).

Before running the extraction tool, the user may replace the county proportion worksheet "Cnty_Prop" and revise the list of items as appropriate. Click on the "Extract" button in the extraction worksheet and the relevant data will be extracted and reported to the user-specified output worksheet, in this example "USGS" (Figure 4.3.4). Any missing, incomplete, or inaccurate items may be modified by the user at this stage before being used as input to the NANI-accounting tool (Section 5), if auxiliary data exist.

8	5)		B A - 🖎 - Calibri	- 11 - ■			.00 .00 Ω	$\Sigma f_x \stackrel{A}{\underset{Z}{\smile}}$	alb 🗚 🙎	₹ 7	NANI_E	xtraction_To	ol_USGS.xlsn	n - Microsof		_ = :
	Home W28	Insert Page L	ayout Formulas D f≈ 64584.444157179	ata Review	View	Add-Ins									(② _ □ ⊃
4	Α	В	С	D	Е	F	G	Н	- 1	J	K	L	M	N	0	Р
1	FIPS	STATE	COUNTY	Area_km2	ag fertilize	er N				non ag fert	ilizer N				total fertil	izer N
2				_	2007	2002	1997	1992	1987	2007	2002	1997	1992	1987	2007	2002
3	1009	Alabama	Blount	1691.637384	1630996	1630996	1354872	1843450	1911127	47668	47668	31453	21794	10918	1678664	1678664
4	1033	Alabama	Colbert	1618.822017	2129833	2129833	1937323	2195371	2608982	51624	51624	38925	30861	16575	2181457	2181457
5	1043	Alabama	Cullman	1947.917897	3054161	3054161	2224965	2427044	1927712	76543	76543	55284	41947	21553	3130704	3130704
6	1049	Alabama	DeKalb	2015.203607	3263057	3263057	3013515	2921278	3482895	60913	60913	41892	31787	16297	3323970	3323970
7	1055	Alabama	Etowah	1425.590932	1169663	1169663	1009881	968611	968321	121416	121416	92960	74421	41087	1291079	1291079
8	1059	Alabama	Franklin	1674.135201	1013560	1013560	941779	1065693	848398	24439	24439	18069	13798	7472	1037999	1037999
9	1071	Alabama	Jackson	2924.789055	3063766	3063766	2889856	2917968	2691908	42349	42349	30468	23590	12731	3106115	3106115
LO	1077	Alabama	Lauderdale	1862.223221	2810465	2810465	2888064	3268787	3342559	90587	90587	67301	52667	27844	2901052	2901052
11	1079	Alabama	Lawrence	1861.593779	4078463	4078463	2796664	3026082	3590061	27408	27408	19905	15628	8131	4105871	4105871
12	1083	Alabama	Limestone	1571.777679	4667779	4667779	4597783	4423839	4374670	67292	67292	46359	34438	16459	4735071	4735071
13	1089	Alabama	Madison	2103.560677	4493510	4493510	3906010	5022877	4640033	397964	397964	282208	219566	103269	4891474	4891474
14	1093	Alabama	Marion	1922.37775	620525	620525	836042	1258753	1097176	22969	22969	17958	13961	7817	643494	643494
15	1095	Alabama	Marshall	1617.892514	1670735	1670735	1438207	1811457	1760584	87420	87420	64625	47494	24627	1758155	1758155
16	1103	Alabama	Morgan	1550.475131	1576483	1576483	1552905	2034304	1649591	131384	131384	96208	74995	37891	1707867	1707867
L7	1133	Alabama	Winston	1636.583993	610057	610057	420261	433558	616205	18215	18215	13357	10029	5357	628272	628272
18	5001	Arkansas	Arkansas	2677.20574	18138723	18138723	16395651	16164407	13196707	17144	17144	7376	10881	7448	18155867	18155867
19	5003	Arkansas	Ashley	2427.04668	5074004	5074004	4368912	4608394	3285050	21404	21404	9224	13335	9042	5095408	5095408
20	5005	Arkansas	Baxter	1511.382962	791051	791051	617473	458779	491765	45755	45755	18508	22339	13443	836806	836806
21	5007	Arkansas	Benton	2263.578146	2941912	2941912	1895525	2361201	2397735	257840	257840	89517	92791	49000	3199752	3199752
22	5009	Arkansas	Boone	1557.487076	1886173	1886173	1668342	1611221	1359226	39273	39273	15605	19363	11805	1925446	1925446
23	5011	Arkansas	Bradley	1695.439372	331615	331615	224853	336530	200066	10303	10303	4241	5791	3966	341918	341918
24	5013	Arkansas	Calhoun	1633.153941	102550	102550	123495	186808	129814	3686	3686	1598	2280	1594	106236	106236
-	▶ ▶I Extr	act USGS Cnty_P	rop / All_Data / 🞾 /						14_							> [
Rea	idy													100% (-	9	

Figure 4.3.4. USGS nutrient input estimates extracted using NANI-extraction tool.

After the fertilizer N application is extracted from the USGS nutrient input estimates, it can be used as input to the NANI-accounting tool (Section 5.3).

4.4. Extracting CMAQ Deposition Estimates

Unlike other NANI components (Sections 4.1, 4.2, and 4.3), atmospheric N deposition is not estimated from the county-based data but based on a grid map containing various deposition estimates generated by the CMAQ model. Using the Watershed Deposition Tool described in Section 3.2, the N deposition estimates in each CMAQ grid cell are exported as a dbf file, which is then imported into the annual and seasonal data worksheets of the NANI-extraction tool "NANI_Extraction_Tool_CMAQ.xlsm" (Figure 4.4.1). Instructions on obtaining and processing the CMAQ data can be found in "Generating N Deposition Maps for SE US Watersheds" document available at http://www.eeb.cornell.edu/biogeo/nanc/GIS_methods/gis_methods.htm.

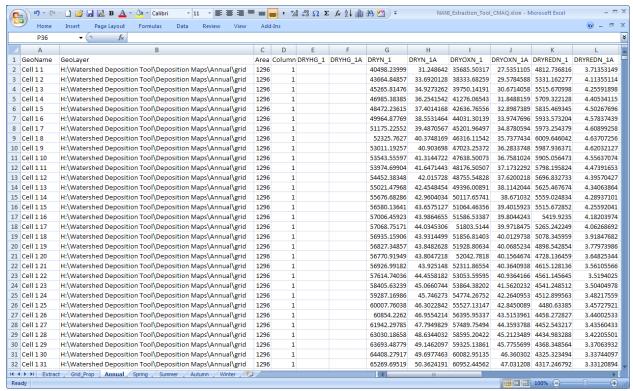


Figure 4.4.1. CMAQ deposition estimates imported into NANI-extraction tool.

In this section, the atmospheric N deposition and other relevant items are extracted from CMAQ deposition estimates, and organized into a format suitable as input to the NANI-accounting tools (Section 5). Open the file "NANI_Extraction_Tool_CMAQ.xlsm" with Excel 2007 (Figure 4.4.2).

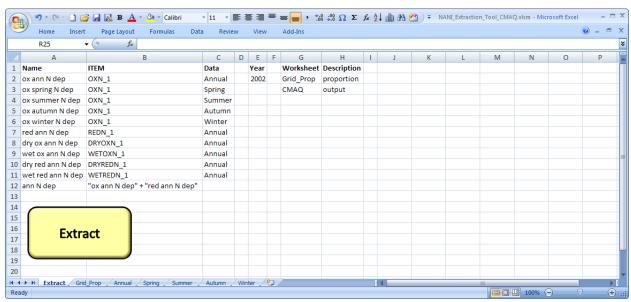


Figure 4.4.2. Extracting CMAQ deposition estimates.

The first worksheet "Extract" contains a list of items to be extracted. Column A contains the user-specified names of the items, and Columns B and C contain the names of the column headings and data worksheets, respectively, where the desired items can be found (Figure 4.4.1). Note that some item names are expressed as simple algebraic equations in Column B of the extraction worksheet, for example "ox ann N dep" + "red ann N dep" (Cell B12). These items are not extracted from the data worksheets but derived by combining multiple items that can be found from the list (see Section 4.1.1.1 for more detail).

Cell E2 of the extraction worksheet specifies the year for the extraction. The CMAQ deposition estimates are currently available only for the year of 2002, and this tool is intended for extracting data (originally from dbf files generated by exporting the attribute tables of GIS maps) for a single year. Columns G and H are used to specify the names of the input and output worksheets. The user needs to specify the names of the input worksheet "proportion" (CMAQ grid proportion worksheet imported from the text file output created by the NANI-GIS tool described in Section 3.2; see Figure 3.2.5), and the output worksheet "output" (used as input to the NANI-accounting tool in Section 5.4).

Before running the extraction tool, the user may replace the grid proportion worksheet "Grid_Prop" and revise the list of items as appropriate. Click on the "Extract" button in the extraction worksheet and the relevant data will be extracted and reported to the user-specified output worksheet, in this example "CMAQ" (Figure 4.4.3). Any missing, incomplete, or inaccurate items may be modified by the user at this stage before being used as input to the NANI-accounting tool (Section 5), if auxiliary data exist.

「													
0	Home	Insert Pag	ge Layout Fo	rmulas Data	Review View	Add-Ins							
	R32	+ (9	fx										
	Α	В	С	D	Е	F	G	Н	1	J	K	L	
1	GRID_NAME	Area_km2	ox ann N dep	ox spring N dep	ox summer N dep	ox autumn N dep	ox winter N dep	red ann N dep	dry ox ann N dep	wet ox ann N dep	dry red ann N dep	wet red ann N dep	
2			2002	2002	2002	2002	2002	2002	2002	2002	2002	2002	
3	Cell 14 64	1311.325596	293026.0232	58835.9696	40942.5238	60733.49744	132514.0225	133259.347	170685.0945	122340.9287	69704.98407	63554.35803	
4	Cell 14 66	1311.497495	248524.3147	52344.26752	42227.92914	52568.13483	101383.9882	103277.8477	147719.963	100804.3517	52761.79523	50516.04749	
5	Cell 14 67	1311.466972	245904.6885	53952.35284	43709.61017	54060.30176	94182.41382	102887.9561	136950.483	108954.1956	48621.34259	54266.61346	
6	Cell 14 68	1311.358454	269057.696	59965.6734	53222.61127	61441.49597	94427.91541	128887.0972	151924.9131	117132.7731	69973.81567	58913.28644	
7	Cell 14 69	1311.171703	276960.3376	62259.22321	62626.57086	63047.67792	89026.87061	219851.7583	169807.4033	107152.9343	159719.1361	60132.6123	
8	Cell 15 62	1310.9352	329459.9854	67062.8139	56853.70422	78788.8493	126754.6179	986248.0898	208538.3167	120921.6687	860528.2588	125719.8607	
9	Cell 15 63	1311.191611	392366.6499	79144.11914	74971.4425	93991.71973	144259.3586	392594.8975	258216.6687	134149.9614	283532.313	109062.5746	
10	Cell 15 64	1311.370836	313285.812	61557.87415	51413.67719	70242.80548	130071.475	150132.2443	171081.1165	142204.6956	67345.74042	82786.50385	
11	Cell 15 65	1311.472575	276477.6599	55526.12292	43719.92798	59129.78741	118101.8364	119561.7843	142460.2925	134017.3773	50531.0224	69030.75696	
12	Cell 15 66	1311.496539	242564.7041	52284.11078	40136.45663	53497.66223	96646.48682	116811.4427	125606.1522	116958.5618	54574.04169	62237.39612	
13	Cell 15 67	1311.442457	211763.4653	48693.83423	37323.43945	47112.84613	78633.35046	89997.7533	113972.2306	97791.23474	37798.5531	52199.20514	
14	Cell 15 68	1311.310077	199534.5813	47539.8067	36869.99963	44314.66296	70810.112	83343.89795	111266.5419	88268.03943	37057.53708	46286.3584	
15	Cell 15 69	1311.099159	208210.4604	50826.8573	40157.94754	45294.6275	71931.02069	96755.28113	116239.6373	91970.82312	46261.16455	50494.11658	
16	Cell 15 70	1310.809482	217441.593	52866.05603	43788.56836	46211.10809	74575.86548	133727.5591	120966.6775	96474.91553	72075.64307	61651.91107	
17	Cell 15 71	1310.440843	218374.1411	51686.00409	44992.84021	47483.45673	74211.83514	131117.8107	122252.7008	96121.43042	74361.51013	56756.30054	
18	Cell 15 72	1309.993052	230310.1714	54338.39813	48940.55695	50035.5401	76995.6861	128471.4382	130227.7104	100082.4609	74035.44855	54435.98969	
19	Cell 16 54	1306.394907	100041.8917	23755.68732	17591.25435	23551.64484	35143.30646	45429.84668	75452.67664	24589.21509	33993.93604	11435.91188	
20	Cell 16 55	1307.236373	402031.3579	104878.2502	90279.4043	100035.4944	106838.1892	144843.9489	350289.0483	51742.28485	119122.9091	25721.04474	
21	Cell 16 56	1308.003325	515871.7954	128051.3892	139238.5551	137751.9994	110829.8419	182301.0996	473898.5288	41973.27649	158163.1392	24137.95056	
22	Cell 16 58	1309.312012	777040.1982	188961.293	209531.7927	212326.2729	166220.8594	273394.9534	716600.6719	60439.54614	230081.469	43313.50909	
23	Cell 16 62	1311.017561	440156.1357	94540.22974	83125.36011	99842.67444	162647.8616	899214.5391	284480.7012	155675.4148	735834.7705	163379.7686	
24	Cell 16 63	1311.25188	359307.3779	73941.27319	56421.67126	75401.79456	153542.6191	292702.6956	187290.5889	172016.7693	168999.104	123703.5817	
14 4	▶ ▶ Extract	CMAQ Gri	d_Prop / Annua	Spring / Summ	er / Autumn / Wint	er / 😉 /		11		Ш		→ [
Rea	iy										100%	·) (+)	

Figure 4.4.3. CMAQ deposition estimates extracted using NANI-extraction tool.

After the atmospheric N deposition is extracted from the CMAQ deposition estimates, it can be used as input to the NANI-accounting tool (Section 5.4).

5. NANI-Accounting Tools

Using the NANI-accounting tools described in this section, the user can calculate all the components of NANI, including the net food and feed imports (Section 5.1), agricultural N fixation (Section 5.2), fertilizer N application (Section 5.3), atmospheric N deposition (Section 5.4), and non-food crop exports (Section 5.5), as well as NANI (Section 5.6).

5.1. Calculating Net Food and Feed Imports

The net food and feed imports are composed of crop and animal N production (negative fluxes removing N from watersheds) and animal and human N consumption (positive fluxes adding N to watersheds). Calculations of crop N production (Section 5.1.1), animal N production and N consumption (Section 5.1.2), and human N consumption (Section 5.1.3) are performed in the "Crops", "Animals", and "People" worksheets, respectively, of the NANI-accounting tool. These results in turn are used for the calculation of net food and feed imports in the "Food_Feed_N" worksheet, as described in Section 5.1.4.

5.1.1. Calculating Crop N Production

In this section, crop N production is calculated in the "Crops" worksheet of the NANI-accounting tool. Open the file "NANI_Budgeting_Tool.xlsm" with Excel 2007 and find the "Crops" worksheet (Figure 5.1.1.1).

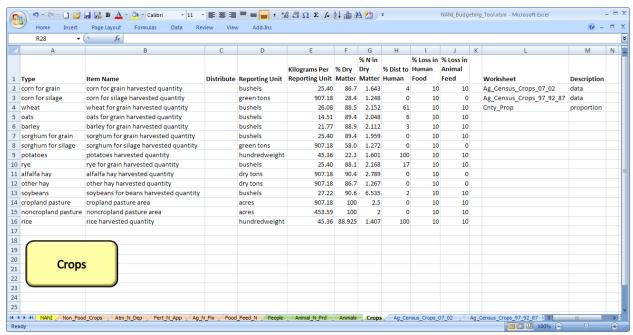


Figure 5.1.1.1. "Crops" worksheet of NANI-accounting tool.

The worksheet contains a list of crops for the calculation of crop N production (Column A) and their user-specified item names (Column B) that are used by the accounting tool to find the corresponding values from the output worksheets generated by the extraction tools (Figures 4.1.1.1.4 and 4.1.2.1.4). Column C, with the column heading "Distribute", provides a way of estimating values of items when they are not directly available in the database. Examples of its application can be found in Sections 5.1.2.1 and 5.1.3. The "Crops" worksheet also has all the crop parameters that are needed for the calculation of crop N production, including the reporting unit (Column D), kilograms per reporting unit (Column E), percent dry matter (Column F), percent N in dry matter (Column G), percent distribution to human (Column H), percent loss of N during the processing of human food (Column I), and percent loss of N during the processing of animal feed (Column J). The values of these parameters used in this example and their references are summarized in Table 5.1.1.1. (Note that the cotton and tobacco in Table 5.1.1.1 are non-food crops used for the calculation of non-food crop exports as described in Section 5.5.)

The worksheet also contains the names of worksheets used as input (Columns L and M). Before running the calculation, the user should make sure that the following input worksheets are included in the same file and revise them as needed:

- A "data" worksheet containing the county-based Agricultural Census data for the crops in 1987, 1992, and 1997, created by the NANI-extraction tool described in Section 4.1.1.1 ("Ag_Census_Crops_97_92_87" shown in Figure 4.1.1.1.4).
- A "data" worksheet containing the county-based Agricultural Census data for the crops in 2002 and 2007, created by the NANI-extraction tool described in Section 4.1.2.1 ("Ag_Census_Crops_07_02" shown in Figure 4.1.2.1.4).
- A "proportion" worksheet containing the proportions of counties falling into the watersheds of interest, created by the NANI-GIS tool described in Section 3.1 ("Cnty_Prop" shown in Figure 3.1.5).

Click on the "Crops" button to run the calculation. The results will be reported in the same worksheet starting from Column O (Figure 5.1.1.2), summarized into six separate tables, reporting:

- Crop Production (kg/km²/yr)
- Crop N Production (kg-N/km²/yr)
- Crop N Production for Humans (kg-N/km²/yr)
- Crop N Production for Animals (kg-N/km²/yr)
- N in Human Food Products (kg-N/km²/yr)
- N in Animal Feed Products (kg-N/km²/yr)

The first table is created by converting the reporting units into kilograms of biomass by multiplying by the conversion factors (Column E) and then by their proportions within the watershed, summing over all the counties, and dividing by the watershed area. The second table is created by converting them into kilograms of nitrogen by multiplying by the percent dry matter (Column F) and then the percent nitrogen (Column G). These conversion factors may not be reported separately in the original literature but as combined (i.e., pre-multiplied) factors. The combined factors may be entered in either Column F or G, while leaving the other column blank.

Table 5.1.1.1. Crop parameters used in the calculation of crop N production. Variables in the square brackets are obtained from Agricultural Census (Sections 4.1.1.1 and 4.1.2.1) and those in the double quotation marks are derived from other variables.

			Kilograms Harvested Per Yield	Percent Dry	Percent N in Dry	Percent Distributed	Percent Loss after Processing	Percent Loss after Processing
Name	Agricultural Census Item Name	Yield Unit	Unit ^a	Matter ^a	Matter ^a	to Human ^b	for Human ^c	for Animals ^c
corn for grain	[corn for grain or seed]	bushels	25.4	86.7	1.64	4	10	10
sorghum for grain	[sorghum for grain or seed]	bushels	25.4	89.4	1.96	0	-	10
wheat	[wheat for grain]	bushels	26.1	88.5^{d}	2.15^{d}	61	10	10
barley	[barley for grain]	bushels	21.8	88.9	2.11	3	10	10
oats	[oats for grain]	bushels	14.5	89.4	2.05	6	10	10
rice	[rice]	hundredweight	45.4	88.9	1.41	100	10	-
rye	[rye for grain]	bushels	25.4	88.1	2.17	17	10	10
cotton	[cotton]	bales	226.8	92.2	3.30	100	10	-
tobacco	[tobacco]	pounds	0.45	-	3.19^{de}	100	10	-
soybeans	[soybeans for beans]	bushels	27.2	90.6	6.54	2	10	10
potatoes	[potatoes]	hundredweight	45.4	22.3	1.60	100	10	-
alfalfa hay	[alfalfa hay]	dry tons	907.2	90.4	2.79	0	-	0
other hay	"other hay" f	dry tons	907.2	86.7^{d}	1.27^{d}	0	-	0
corn for silage	[corn for silage or green chop]	green tons	907.2	28.4	1.25	0	-	0
sorghum for silage	[sorghum for silage or green chop]	green tons	907.2	58.0	1.27	0	-	0
cropland pasture	[cropland pasture]	acres	907.2	-	2.5	0	-	10
noncropland pasture	"noncropland pasture" ^g	acres	453.6	-	2.0	0		10

^a Lander et al. (1998); Boyer et al. (2002) ^b Jordan and Weller (1996); Boyer et al. (2002) ^c Boyer et al. (2002)

d Values for varieties or subcategories averaged e percent dry matter × percent N in dry matter f "other hay" = [all hay] – [alfalfa hay]

g "noncropland pasture" = [all pastureland] – [cropland pasture]

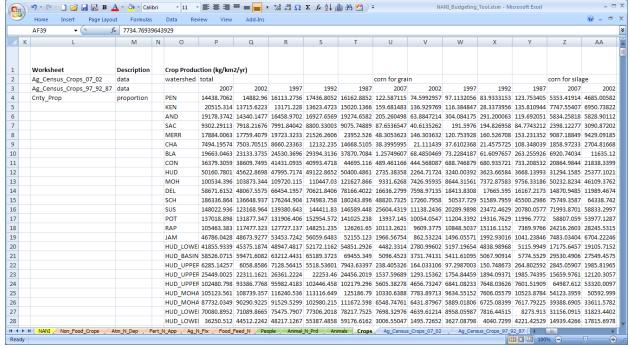


Figure 5.1.1.2. Crop N production calculated by NANI-accounting tool.

After the crop N production is calculated, it is distributed into the human and animal use (third and fourth tables, respectively) using the information given in Column H. Finally, in the fifth and sixth tables, N in human food and animal feed products are reported, respectively, applying the proportions lost during the processing (specified in Columns I and J, respectively). The fifth and sixth tables are used in the calculation of net food and feed imports, as described in Section 5.1.4.

5.1.2. Calculating Animal N Production and N Consumption

5.1.2.1. Static Livestock Model

In this section, animal N production and N consumption are calculated in the "Animals" worksheet of the NANI-accounting tool, using an approach referred to as "static livestock model" (Boyer et al. 2002), that involves obtaining the animal numbers of each of the 11 livestock groups from the inventory data of Agricultural Census, and multiplying the animal parameters to obtain the animal N production and N consumption. The application of an alternative approach referred to as "dynamic livestock model" (Han and Allan 2008) is described in Section 5.1.2.2. Open the file "NANI_Budgeting_Tool.xlsm" with Excel 2007 and find the "Animals" worksheet (Figure 5.1.2.1.1).

4	Α		В	С	D	Е	F	G	Н		J	K	L	M	Т
				Sales		Cycles	Days	Animal N		Ammonia	% Loss in	-	-		т
				Item		per	on the	Intake (kg-	Excretion (kg-	Emission (kg-	Human				
Type		Inventory Item	Name	Name	Distribute	Year	Farm	N/animal/yr)	N/animal/yr)	N/animal/yr)	Consumption		Worksheet	Description	ı
beef ca	ttle	beef cows inve	ntory				365	66.75	58.51	18.83	10		Ag_Census_Animals_07_02	data	
dairy ca	ttle	milk cows inve	ntory				365	156	121	18.83	10		Ag_Census_Animals_97_92_87	data	
pigs and	hogs	hogs and pigs i	nventory				365	8.51	5.84	4.2	10		Cnty_Prop	proportion	
sheep		sheep and lam	bs inventory				365	5.97	5	2.77	10				
horse		horses and por	nies inventory				365	44.8	40	10.03	10				
layers		layers more tha	an 13 weeks inventory				365	0.84	0.55	0.2	10				
broilers		broilers invent	ory				365	0.13	0.07	0.14	10				
turkey		turkeys invent	ory				365	0.62	0.39	0.71	10				
goats		milk and angor	a goats inventory				365	5.97	5	5.26	10				
1 young b	eef cattle	young cattle in	ventory		beef cattle		365	66.75	58.51	10.72	10				
2 young c	lairy cattle	young cattle in	ventory		dairy cattle		365	156	121	10.72	10				
3															
4															
5															
5	Anim	alc													
7	A111111	413													
3															
9															
0															
1															

Figure 5.1.2.1.1. "Animals" worksheet of NANI-accounting tool (static livestock model).

The worksheet contains a list of animals for the calculation of animal N production and N consumption (Column A) and their user-specified inventory item names (Column B) that are used by the accounting tool to find the corresponding values from the output worksheets generated by the extraction tools (Figures 4.1.1.2.2 and 4.1.2.2.2). Column C, with the column heading "Sales Item Name" is left blank in the static approach, which uses only the inventory data to estimate animal numbers. Column D, with the column heading "Distribute", provides a way of estimating values of items when they are not directly available in the database. In this example, the user wants to calculate the numbers of "young beef cattle" and "young dairy cattle" (Rows 11 and 12, respectively) to assign different animal parameters. As shown in Figure 5.1.2.1.1, the number of total young cattle ("young cattle inventory" calculated as "cattle and calves inventory" – "beef cows inventory" – "milk cows inventory"; see Figures 4.1.1.2.1 and Figure 4.1.2.2.1) is distributed between the "young beef cattle" and "young dairy cattle" according to the relative proportions of the "beef cattle" and "dairy cattle" (adults), respectively, that are available in Agricultural Census.

The "Animals" worksheet also has all the animal parameters that are needed for the calculation of animal N production and N consumption (and other relevant items), including the animal N intake (Column G), N in animal excretion (Column H), ammonia emission (Column I), and percent loss of N during the conversion into the human food products, such as milk, meat, eggs, etc. (Column J). (The parameters in Columns E and F are used in the dynamic approach, and for the static approach Column E should be left blank and Column F should be set to 365.) The values of animal parameters used in this example and their references are summarized in Table 5.1.2.1.1.

The worksheet also contains the names of worksheets used as input (Columns L and M). Before running the calculation, the user should make sure that the following input worksheets are included in the same file and revise them as needed:

Table 5.1.2.1.1. Animal parameters used in the static livestock model. Variables in the square brackets are obtained from Agricultural Census (Sections 4.1.1.2 and 4.1.2.2) and those in the double quotation marks are derived from other variables. Parameter values were obtained from Boyer et al. (2002).

		Animal N	N in Animal	Ammonia
		Intake (kg-	Excretion (kg-	Emission (kg-
Name	Agricultural Census Item Name	N/animal/yr)	N/animal/yr)	N/animal/yr)
beef cattle	[beef cows inventory]	66.75	58.51	18.83
dairy cattle	[milk cows inventory]	156	121	18.83
pigs and hogs	[hogs and pigs inventory]	8.51	5.84	4.2
layers	[layers 13 weeks old and older inventory]	0.84	0.55	0.2
broilers	[broilers inventory]	0.13	0.07	0.14
turkey	[turkeys inventory]	0.62	0.39	0.71
sheep	[sheep and lambs inventory]	5.97	5	2.77
horse	[horses and ponies inventory]	44.8	40	10.03
goats	[milk and angora goats inventory]	5.97	5	5.26
other beef cattle	"other beef cattle inventory" ^a	N/A ^b	N/A^b	10.72
other dairy cattle	"other dairy cattle inventory"c	N/A ^d	N/A ^d	10.72

^a "other beef cattle inventory" = "other cattle inventory" × [beef cows inventory] / ([beef cows inventory] + [milk cows inventory])

^b estimated from beef cattle

^c "other dairy cattle inventory" = "other cattle inventory" × [milk cows inventory] / ([beef cows inventory] + [milk cows inventory])

^d estimated from dairy cattle

^e "other cattle inventory" = [cattle and calves inventory] – [beef cows inventory] – [milk cows inventory]

- A "data" worksheet containing the county-based Agricultural Census data for the animals in 1987, 1992, and 1997, created by the NANI-extraction tool described in Section 4.1.1.2 ("Ag_Census_Animals_97_92_87" shown in Figure 4.1.1.2.2).
- A "data" worksheet containing the county-based Agricultural Census data for the animals in 2002 and 2007, created by the NANI-extraction tool described in Section 4.1.2.2 ("Ag_Census_Animals_07_02" shown in Figure 4.1.2.2.2).
- A "proportion" worksheet containing the proportions of counties falling into the watersheds of interest, created by the NANI-GIS tool described in Section 3.1 ("Cnty_Prop" shown in Figure 3.1.5).

Click on the "Animals" button to run the calculation. The results will be reported in the same worksheet starting from Column O (Figure 5.1.2.1.2), summarized into six separate tables, reporting:

- Animal Density (animals/km²)
- Ammonia Emission (kg-N/km²/yr)
- N in Animal Excretion (kg-N/km²/yr)
- Animal Requirements of N (kg-N/km²/yr)
- Animal Production for Human Consumption (kg-N/km²/yr)
- N in Animal Products (Milk, Meat, Eggs, etc) (kg-N/km²/yr)

	Home Insert Page Layout AE39 ▼ f _x	Formulas 3.7838377916	Data Review	v View	Add-Ins										0 - 1
1 K	L	M	N O	Р	Q	R	S	Т	U	V	W	Х	Υ	Z	AA
	Worksheet	Danadatian	Animal Dan	-14 (11-	/l2)										
	Ag Census Animals 07 02	Description data	Animal Den watershed		/KIN2)				beef cattle					dairy cattle	
Н	Ag Census Animals 97 92 87	data	watersneu	2007	2002	1997	1992	1987	2007	2002	1997	1992	1987	2007	20
	Cnty Prop	proportion	PEN		1.15051832		42.5139112								
		proportion	KEN		16.3804502		50.0761365							0.62313694	
			AND	32.683217			64.9177274								
			SAC	7.9761969	5.94935478	47.6369947	27.9353335	26.1776667	0.13193459	0.14698531	0.13503469	0.13796419	0.12791237	0.16927103	0.200127
			MERR	14.4810669	15.5069631	16.5111287	17.4712295	49.2442181	0.29193132	0.25212879	0.22761738	0.2077632	0.26119342	0.53826691	0.68096
			CHA	7.57337443	11.0861737	21.3528828	15.7224331	37.5825628	0.24765025	0.30289945	0.21720045	0.27365311	0.31970193	0.15092723	0.27375
			BLA	31.3043059	47.9885273	49.3424542	80.8872142	212.287319	0.49528001	0.43184936	0.35289776	0.34491004	0.53917478	0.51775861	0.85118
			CON	14.8936495	18.5619681	30.2925956	17.501243	35.9894243	0.34452014	0.33664563	0.35628254	0.34139483	0.37071575	1.68717923	1.89229
			HUD	21.5266144	17.8263385	24.4660473	25.8760401	24.5281297	0.30812407	0.26614364	0.3362593	0.26023713	0.26418963	2.01719185	2.08782
			МОН	26.0215772	27.726814	20.3697247	55.0403187	27.0966169	0.72323659	0.59627331	0.59806855	0.61636164	0.47218821	4.15162582	5.04155
			DEL	58.5933952	106.939316	62.4726523	75.9608477	124.464275	0.69980277	0.61675513	0.64384157	0.59203704	0.58459309	1.47516694	1.98709
			SCH	1079.01787	1113.14261	1050.46802	620.933591	689.258372	0.85774392	1.0764858	0.96624149	0.95779691	0.90557436	6.3645831	6.50284
			SUS	656.023555	583.303259	581.596546	574.782954	557.363224	1.22698555	1.515458	1.18964101	1.05960637	1.02698796	6.15447314	6.64476
			POT	1804.15743	1928.23373	1934.57589	1513.56616	1139.48973	6.70002932	6.73836106	6.96922528	6.47968343	5.69180835	4.14943329	4.85795
			RAP	71.164048	91.0736408	118.058497	109.565526	113.022279	10.6037686	10.4972572	12.8199358	12.988339	11.0777278	1.52268474	1.9561
			JAM				251.699804								
				30.6515994											
				26.6908286											
			_	2.29495956										0.1926543	
				23.2396317											
				37.4305403										4.14821951	
				19.3636519											
				44.5739766											
			HUD_LOWE	36.5382163											

Figure 5.1.2.1.2. Static livestock model calculation results.

The first table (animal density) is created by multiplying the animal inventory numbers (as specified in Column B) by their proportions within the watershed, summing over all the counties, and dividing by the watershed area. The second, third, and fourth tables are created by multiplying the animal densities by the ammonia emission parameters (Column I), animal excretion parameters (Column H), and animal intake parameters (Column G), respectively, to obtain ammonia emission, N in animal excretion, and animal requirements of N (i.e., animal N consumption), respectively. The fifth table is created by subtracting the N in animal excretion (third table) from the animal requirements of N (fourth table), and represents the animal production of nitrogen available for human consumption. Finally, N in animal products (i.e., animal N production) is reported in the sixth table, applying the proportions lost during the processing (specified in Column J). The fourth (animal N consumption) and sixth (animal N production) tables are used in the calculation of net food and feed imports, as described in Section 5.1.4.

5.1.2.2. Dynamic Livestock Model

In this section, animal N production and N consumption are calculated in the "Animals" worksheet of the NANI-accounting tool, using an approach referred to as "dynamic livestock model" (Han and Allan 2008). A simpler approach, referred to as "static livestock model" (Boyer et al. 2002), is described in Section 5.1.2.1. The dynamic method applied by Han and Allan (2008) involves disaggregation of animals into 18 livestock groups and estimation of the "average" animal numbers using the sales data, as well as the inventory data, with the consideration of the life cycle of animals or the number of days per year the animals stay on the farm. When the value for the animal life cycle is given, the average number of animals is calculated as:

Average Number = Inventory
$$\times \frac{1}{\text{Cycles}} + \text{Sales} \times \frac{1}{\text{Cycles}} \times \frac{\text{Cycles} - 1}{\text{Cycles}}$$
 (5.1.2.2.1)

When the number of days on the farm is given:

Average Number = Inventory
$$\times \frac{\text{Days}}{365} + \text{Sales} \times \frac{\text{Days}}{365} \times \frac{1}{2}$$
 (5.1.2.2.2)

If no sales data are given, only the inventory data are applied, resulting in the same number of animals as the static method when the life cycle is one or the number of days on the farm is 365. If only the sales data are available, they are treated as the inventory data. A full description of the animal model and mathematical derivation of these equations can be found in Kellogg et al. (2000). To calculate animal N production and N consumption using the dynamic approach, the "Animals" worksheet of the NANI-accounting tool can be set as shown in Figure 5.1.2.2.1. (Note that, except for the list of animals and parameter values, it is the same accounting tool as "NANI_Budgeting_Tool.xlsm" described in Section 5.1.2.1.)

	P31 ▼	(f _x												
4	Α	В	С	D	E	F	G	Н	I	J	K	L	M	
					Cycles		Animal N		Ammonia	% Loss in				
								Excretion (kg-						
		Inventory Item Name	Sales Item Name	Distribute				N/animal/yr)	N/animal/yr)	Consumption		Worksheet	Description	1
-	fattened cattle		fattened cattle sold		2.5		50.3	48	19.2	10		Ag_Census_Animals_07_02	data	
	milk cows	milk cows inventory				365	130.8	104	26	10		Ag_Census_Animals_97_92_87	data	
	hogs for breeding	breeding hogs and pigs invento	ory			365	13.8	9.1	4.7	10		Cnty_Prop	proportion	
		other hogs and pigs inventory	other hogs and pigs sold		2		24	5.8						
	chicken layers	layers more than 20 weeks inv	entory			365	0.8	0.7	0.3	10				
	breeding turkeys	breeding turkeys inventory				365	2.1	1.7	0.8	10				
ŀ	chicken pullets	pullets inventory	pullets less than 20 wee	ks sold	2.25		0.4	0.4	0.2	10				
ŀ	chicken broilers	broilers inventory	broilers sold		6		0.8	0.7	0.3	10				
ŀ	slaughter turkeys	slaughter turkeys inventory	slaughter turkeys sold		2		2.1	1.6	0.7	10				
		beef cow breeding herd invent				365	60.9	59.8	4.8	10				
l	beef calves	expected beef calves	purchased and sold bee	fcalves		150	19.9	9.8	0.8	10				
Ŀ	dairy calves	expected dairy calves				150	10.6	6.7	0.5	10				
		beef replacement herd heifers				150	40.5	28.2	2.3	10				
ŀ	dairy heifers	dairy replacement herd heifer				150	43.5	34.2	2.7	10				
l	beef stockers	estimated beef stockers	purchased and sold bee	fstockers		200	37.6	26.6	10.6	10				
ŀ	dairy stockers					200								
		sheep and lambs inventory				365		8.4						
l	norses	horses and ponies inventory				365	44.8	40	9.3	10				
1														
ł														
l	Anima	als												
ļ	/													
ļ														

Figure 5.1.2.2.1. "Animals" worksheet of NANI-accounting tool (dynamic livestock model).

A detailed description on the "Animals" worksheet is given in Section 5.1.2.1. In contrast to the static approach, the sales item names may be provided in Column C (in addition to the inventory item names in Column B), as well as animal life cycle (Column E) and number of days on the farm (Column F). Click on the "Animals" button to run the calculation. The results will be reported in the same worksheet starting from Column O (Figure 5.1.2.2.2). The values of animal parameters used in this example and their references are summarized in Table 5.1.2.2.1.

Ca	u) - (** 🗋 💅 🖟 🔉 B 🛕	- 🖄 - Calibri	- 11 - ■	===	= = , ;	.0 .00 Ω Σ	fx ∆ iii	A 🕙 🙃		NAN	II_Budgeting_T	ool.xlsm - Mic	rosoft Excel		_ !	= x
	Home Insert Page Layout	Formulas	Data Review	/ View	Add-Ins										0 - =	X
	AE39 ▼ (f _x	0.9607208545	3453													×
K	L	M	N O	Р	Q	R	S	Т	U	٧	W	Х	Υ	Z	AA	
																ш
1	Worksheet	Description	Animal Den		/km2)											
2	Ag_Census_Animals_07_02	data	watershed						fattened ca					milk cows		4
3	Ag_Census_Animals_97_92_87	data		2007	2002	1997	1992	1987	2007	2002	1997	1992	1987	2007	200	_
4	Cnty_Prop	proportion	PEN	4.40235573				51.1725273					0.00662529			-
5																
6																
	7 SAC 8.88135837 5.60233978 64.3838352 28.5961528 45.5523706 0.00683722 0.00556192 0.00822598 0.01303645 0.00871581 0.16927103 0.20012275 8 MERR 13.7103777 14.0892351 24.0276811 19.3209812 46.7042629 0.00559466 0.01452613 0.01227956 0.01602312 0.02401579 0.53826691 0.68096327															-
9			CHA										0.02401579			_
10			BLA										0.03421304			-
11			CON										0.04542030			_
12			HUD										0.03332262			_
13			MOH										0.10351029			-
14			DEL	70.8650994									0.1246563			_
15			SCH	1191.53805	1232.91359	1089.34549	892.567627	631.225223	0.84507405	1.25537803	1.13239544	1.22593178	1.53444428	6.3645831	6.5028458	9
16			SUS	658.261754	625.071702	600.509352	602.798637	555.562734	0.68706261	0.82819127	0.65764921	0.82811965	0.86720056	6.15447314	6.6447658	6
17			POT	1937.37037	2097.44753	2129.12151	1577.53431	1131.14303	0.36711938	0.5310684	0.37072046	0.57750956	0.72155134	4.14943329	4.8579567	9
18			RAP	84.8433978	91.1598286	107.649553	81.6105277	105.030862	0.31593156	0.91565016	0.63794011	0.93692675	1.20103704	1.52268474	1.956100	2
19			JAM	270.749708	233.766476	225.209074	259.165349	185.721908	0.07740456	0.19272203	0.08836619	0.130585	0.17932777	0.42522546	0.455808	4
20			HUD_LOWE	28.3410167	37.1079222	30.1502476	28.2066523	42.7476795	0.07254933	0.13771176	0.08182819	0.07973703	0.160242	1.16676979	1.6192212	1
21			HUD_BASIN	23.5437868	28.6463998	26.5027682	27.6335142	34.3637266	0.05698388	0.10107967	0.06199499	0.05941145	0.10690508	2.14845474	2.5858731	6
22			HUD_UPPER	1.91714598	2.25032663	3.58364166	1.91777356	2.47425925	0.00236719	0.00482354	0.0224839	0.00479568	0.00476524	0.1926543	0.2089522	4
23			HUD_UPPER													_
24			HUD_UPPER	33.4161058	31.2214322	47.1558401	48.8145069	50.0555976	0.04791177	0.06030314	0.03154708	0.03269076	0.06800111	4.14821951	4.3340060	4
H +++	NANI Non_Food_Crops Atm	N_Dep / Fert	N_App / Ag_N_Fi	x / Food_Fee	d_N People	Animal_N_	Prd Anima	ls Crops	Ag_Census_C	rops_07_02	Ag_Census	Crops_97_92_				
Ready												1	1009	% 😑	-	Đ,;

Figure 5.1.2.2.2. Dynamic livestock model calculation results.

Table 5.1.2.2.1. Animal parameters used in the dynamic livestock model. Variables in the square brackets are obtained from Agricultural Census (Sections 4.1.1.2 and 4.1.2.2) and those in the double quotation marks are derived from other variables as described in detail in Kellogg et al. (2000). Parameter values were obtained from Han and Allan (2008).

						N in Animal	Ammonia
			Cycles	Days	Animal N	Excretion	Emission
	Agricultural Census Item Name	Agricultural Census Item Name	per	on the	Intake (kg-N/	(kg-N/	(kg-N/
Name	(Inventory Variable)	(Sales Variable)	Year	Farm	animal/yr)	animal/yr)	animal/yr)
fattened cattle		[fattened cattle sold]	2.5		50.3	48	19.2
milk cows	[milk cows inventory]			365	130.8	104	26
hogs for breeding	[breeding hogs and pigs inventory]			365	13.8	9.1	4.7
hogs for slaughter	[other hogs and pigs inventory]	[other hogs and pigs sold]	2		24	5.8	3
chicken layers	[layers 20 weeks old and older inventory]			365	0.8	0.7	0.3
breeding turkeys	[breeding turkeys inventory]			365	2.1	1.7	0.8
chicken pullets	[pullets less than 20 weeks old inventory]	[pullets less than 20 weeks old sold]	2.25		0.4	0.4	0.2
chicken broilers	[broilers inventory]	[broilers sold]	6		0.8	0.7	0.3
slaughter turkeys	[slaughter turkeys inventory]	[slaughter turkeys sold]	2		2.1	1.6	0.7
beef breeding herd	"beef cow breeding herd inventory"a			365	60.9	59.8	4.8
beef calves	"expected beef calves" b	"purchased and sold beef calves" c		150	19.9	9.8	0.8
dairy calves	"expected dairy calves" ^d			150	10.6	6.7	0.5
beef heifers	"beef replacement herd heifers"e			150	40.5	28.2	2.3
dairy heifers	"dairy replacement herd heifers"			150	43.5	34.2	2.7
beef stockers	"estimated beef stockers" ^g	"purchased and sold beef stockers" ^h		200	37.6	26.6	10.6
dairy stockers				200	37.6	18.6	7.4
sheep	[sheep and lambs inventory]			365	14.5	8.4	5.6
horses	[horses and ponies inventory]			365	44.8	40	9.3

[&]quot;beef cow breeding herd inventory" = [beef cows inventory] + "bulls inventory"

b "expected beef calves" = $0.82 \times [\text{beef cows inventory}]$

[&]quot;c "purchased and sold beef calves" = [calves sold] - "expected beef calves" - "expected dairy calves"

^d "expected dairy calves" = $0.65 \times [\text{milk cows inventory}]$

e "beef replacement herd heifers" = Minimum $(0.15 \times [\text{beef cows inventory}], "beef heifers inventory")$

[&]quot;dairy replacement herd heifers" = Minimum $(0.2 \times [\text{milk cows inventory}], [\text{heifers inventory}])$

g "estimated beef stockers" = Minimum ("beef stockers sold and inventory", "expected beef calves")
h "purchased and sold beef stockers" = "beef stockers sold and inventory", "expected beef calves"
b

[&]quot;bulls inventory" = Minimum $(0.05 \times [beef cows inventory], [steers and bulls inventory])$

[&]quot;beef heifers inventory" = [heifers inventory] – "dairy replacement herd heifers"

[&]quot;beef stockers sold and inventory" = "beef stockers sold" + "beef stockers inventory"

[&]quot;beef stockers sold" = [cattle sold] - [fattened cattle sold] - "beef replacement herd heifers" - "dairy replacement herd heifers"

[&]quot;"beef stockers inventory" = [heifers inventory] - "beef replacement herd heifers" - "dairy replacement herd heifers" + [steers and bulls inventory] - "bulls" inventory"

The accounting tool calculates the "average" animal numbers by applying the Equation 5.1.2.2.1 or 5.1.2.2.2, depending on the parameter specification. Subsequent calculations of animal N production and N consumption and generation of output tables in the "Animals" worksheet are the same as those described in Section 5.1.2.1. Again, the fourth (animal N consumption) and sixth (animal N production) tables generated by the accounting tool are used in the calculation of net food and feed imports (Section 5.1.4).

5.1.2.3. Animal N Products

In the previous two sections, animal N production was calculated as the difference between the animal N consumption and animal N excretion, that were estimated from the animal numbers and parameters based on the "static" (Section 5.1.2.1) and "dynamic" (Section 5.1.2.2) livestock models. The dynamic approach described in Han and Allan (2008) and Han et al. (2009) also included the calculation of animal N production from slaughtered livestock sales data multiplied by their live weights, edible portions, and the nitrogen content in the edible portion. Using the toolbox, any combination of the animal calculation methods (disaggregation of animal groups, assignment of parameter values, choice of calculation modules, etc.) can be made by the user.

To estimate animal N production from the N content of the edible portion of animals (instead of the difference between the animal N consumption and animal N excretion), open the file "NANI_Budgeting_Tool.xlsm" with Excel 2007 and find the "Animal_N_Prd" worksheet (Figure 5.1.2.3.1).

C	Hon	(□ ·) 📂 🖟 🕟 B 🛕 · 处 · Calib ne Insert Page Layout Formulas	ri + 11			dd-Ins	.00 *.0	Ω Σ & 2 1 A 2 = N	ANI_Budgeting	Tool	l.xlsm - Micros		_ = X
	P24	▼ (f _x											¥
	Α	В	С	D	Е	F	G	Н	I	J	K	L	M
1	Туре	Item Name	Distribute	Product Weight (kg/animal)	Portion	N in Edible Portion (%)		Worksheet	Description				
2	beef	sales of cattle except dairy heifers		463	42.2	4.8		Ag_Census_Animals_07_02	data				
3	veal	calves sold		103	41	3.2		Ag_Census_Animals_97_92_87	data				
4	pork	hogs and pigs sold		112	53.6	0.52		Cnty_Prop	proportion				
5	lamb	sheep and lambs sold		44.6	49.8	4.8							
6	chicken	layers and pullets sold		2.16	73	2.16							
7	egg	layers more than 20 weeks inventory		14.5	89	1.76							
8	broiler	broilers sold		1.71	69	1.71							
9	turkey	turkeys sold		8.51	79	2.93							
10	milk	milk cows inventory		9091	100	0.496							
11													
12													
13		Animal N											
14		Animarin											
15		Products											
16													
17													
18													
19													
I4 4 Rea	b bl N/	ANI Non_Food_Crops Atm_N_Dep Fe	rt_N_App	Ag_N_Fix / Fo	od_Feed_N	N People	Anii	mal_N_Prd Animals Crops	Ag_Census_Crop		100%		+ .;

Figure 5.1.2.3.1. "Animal_N_Prd" worksheet of NANI-accounting tool.

The worksheet contains a list of animal products for the calculation of animal N production (Column A) and their user-specified item names (Column B) that are used by the accounting tool to find the corresponding values from the output worksheets generated by the extraction tools (Figures 4.1.1.2.2 and 4.1.2.2.2). Column C, with the column heading "Distribute", provides a way of estimating values of items when they are not directly available in the database. Examples of its application can be found in Sections 5.1.2.1 and 5.1.3. The worksheet also contains the animal parameters that are needed for the calculation of animal N production, including the live weights of animals (e.g., cattle, swine, sheep, etc.) or animal products (milk, eggs, etc.) (Column D), their edible portions (Column E), and the nitrogen contents of the edible portions (Column F). The values of animal parameters used in this example and their references are summarized in Table 5.1.2.3.1.

The worksheet also contains the names of worksheets used as input (Columns H and I). Before running the calculation, the user should make sure that the following input worksheets are included in the same file and revise them as needed:

- A "data" worksheet containing the county-based Agricultural Census data for the animals in 1987, 1992, and 1997, created by the NANI-extraction tool described in Section 4.1.1.2 ("Ag_Census_Animals_97_92_87" shown in Figure 4.1.1.2.2).
- A "data" worksheet containing the county-based Agricultural Census data for the animals in 2002 and 2007, created by the NANI-extraction tool described in Section 4.1.2.2 ("Ag_Census_Animals_07_02" shown in Figure 4.1.2.2.2).
- A "proportion" worksheet containing the proportions of counties falling into the watersheds of interest, created by the NANI-GIS tool described in Section 3.1 ("Cnty_Prop" shown in Figure 3.1.5).

Click on the "Animal N Products" button to run the calculation. The results will be reported in the same worksheet starting from Column K (Figure 5.1.2.3.2), summarized into three separate tables, reporting:

- Total Animal Production (kg/km²/yr)
- Edible Animal Production (kg/km²/yr)
- N in Animal Products (Milk, Meat, Eggs, etc) (kg-N/km²/yr)

The first table is created by multiplying the animal numbers (as specified in Column B) by the live weights of animals or animal products (Column D) and then by their proportions within the watershed, summing over all the counties, and dividing by the watershed area. The second table is created by multiplying their edible portions (Column E), and the third table is created by multiplying the percent nitrogen in the edible portions (Column F), resulting in N in animal products (i.e., animal N production).

As described in Section 5.1.4, for the calculation of net food and feed imports, the user has an option to choose the third table of the "Animal_N_Prd" worksheet (animal N production calculated from the N content of the edible portion of animals), instead of the sixth tables of the "Animals" worksheet (animal N production calculated from the difference between the animal N consumption and animal N excretion; see Sections 5.1.2.1 and 5.1.2.2).

Table 5.1.2.3.1. Animal parameters used in the calculation of animal N products. Variables in the square brackets are obtained from Agricultural Census (Sections 4.1.1.2 and 4.1.2.2) and those in the double quotation marks are derived from other variables. Parameter values, unless otherwise noted, were obtained from Han et al. (2009).

Name	Agricultural Census Item Name	Live Weight (kg/animal)	Edible Portion (%)	N in Edible Portion (%)
beef	"sales of cattle except dairy heifers" a	463	42.2	4.8
veal	[calves sold]	103	41	3.2
pork	[hogs and pigs sold]	112	53.6	0.52
lamb	[sheep and lambs sold]	44.6	49.8	4.8
chicken	[layers and pullets sold]	2.16	73	2.16
egg	[layers more than 20 weeks inventory]	14.5°	89	1.76
broiler	[broilers sold]	1.71	69	1.71
turkey	[turkeys sold]	8.51	79	2.93
milk	[milk cows inventory]	9091 ^d	100	0.496

^a "sales of cattle except dairy heifers" = [cattle sold] - "dairy replacement herd heifers"

^b "dairy replacement herd heifers" = Minimum (0.2 × [milk cows inventory], [heifers inventory]) (Kellogg et al., 2000)

^c 250 (average eggs laid annually per layer; USDA/NASS, 1987-2007) × 0.058 kg/egg

^d milk produced annually per milk cow (kg/animal/yr)

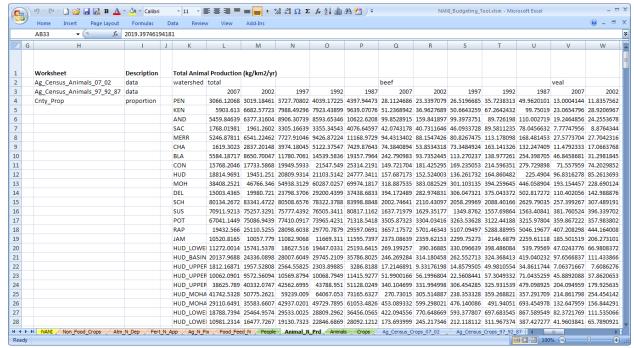


Figure 5.1.2.3.2. Animal N products calculated by NANI-accounting tool.

5.1.3. Calculating Human N Consumption

In this section, human N consumption is calculated in the "People" worksheet of the NANI-accounting tool, based on the population extracted from the Census data (Section 4.2). Open the file "NANI_Budgeting_Tool.xlsm" with Excel 2007 and find the "People" worksheet (Figure 5.1.3.1).

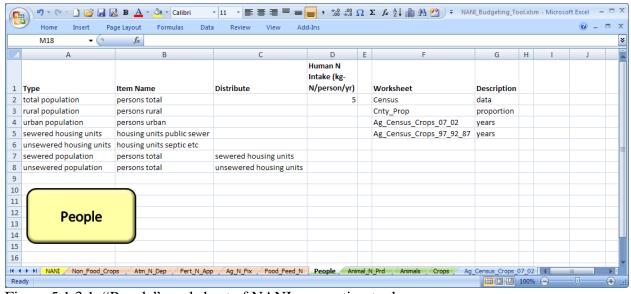


Figure 5.1.3.1. "People" worksheet of NANI-accounting tool.

The worksheet contains a list of Census items for the calculation of human N consumption and other relevant variables (Column A), and their user-specified item names (Column B) that are used by the accounting tool to find the corresponding values from the output worksheets generated by the extraction tools (Figure 4.2.4). Column C, with the column heading "Distribute", provides a way of estimating values of items when they are not directly available in the database. In this example, the user wants to calculate "sewered population" and "unsewered population" (Rows 7 and 8, respectively), that are not directly available from the Census data. As shown in Figure 5.1.3.1, the total population ("persons total" extracted from the Census data; see Figure 4.2.1) is distributed between the "sewered population" and "unsewered population" according to the relative proportions of the "sewered housing units" and "unsewered housing units", respectively, that are available in the Census data (Figure 4.2.1). Human intake of nitrogen in kg-N/person/year should be specified in Column D, at the row where the total population variable can be found (Row 2 in this example). In this example, human N consumption was calculated by assuming the per-capita annual rate of 5 kg-N/person/yr (Boyer et al. 2002), multiplied by the population density (persons/km²) obtained from the Census data.

The worksheet also contains the names of worksheets used as input (Columns F and G). Before running the calculation, the user should make sure that the following input worksheets are included in the same file and revise them as needed:

- A "data" worksheet containing the county-based Census data for the population in 1990 and 2000, created by the NANI-extraction tool described in Section 4.2 ("Census" shown in Figure 4.2.4).
- A "proportion" worksheet containing the proportions of counties falling into the watersheds of interest, created by the NANI-GIS tool described in Section 3.1 ("Cnty_Prop" shown in Figure 3.1.5).
- A "years" worksheet containing the county-based Agricultural Census data in 1987, 1992, and 1997, created by the NANI-extraction tool described in Section 4.1.1.1 ("Ag_Census_Crops_97_92_87" shown in Figure 4.1.1.1.4) or in Section 4.1.1.2 ("Ag_Census_Animals_97_92_87" shown in Figure 4.1.1.2.2).
- A "years" worksheet containing the county-based Agricultural Census data in 2002 and 2007, created by the NANI-extraction tool described in Section 4.1.2.1 ("Ag_Census_Crops_07_02" shown in Figure 4.1.2.1.4) or in Section 4.1.2.2 ("Ag_Census_Animals_07_02" shown in Figure 4.1.2.2.2).

The "years" worksheets are not directly used for the calculation of human N consumption but for identifying the years of Agricultural Census data. Since the Census and Agricultural Census data are not available in the same years and our primary interest in this analysis is to estimate NANI in Agricultural Census years, the populations extracted for the Census years (1990 and 2000) are used to estimate populations in Agricultural Census years (1987, 1992, 1997, 2002, and 2007) through interpolation or extrapolation.

Click on the "People" button to run the calculation. The results will be reported in the same worksheet starting from Column I (Figure 5.1.3.2), summarized into two separate tables (horizontally arranged).

8	17						* 11				_	50 →.0 44	L Jx	Z+ illi	AA 😬	, •		NANI	_budgetii	119_1001.X	lsm - Mici	osuit Exc	E1		0	
	Home	Insert		Layout	Formi	ulas	Data	Review	View	Ado	i-Ins														(
	AK48	-	(9	f_{x}																						
4	1	J	K	L	M	N	0	P	Q	R	S	T	U	V	W	X Y	Z	AA	AB	AC	AD	AE	AF	AG	AH	Al
_	Population (watershed				pulatio			sewere			red hou	sewere	d popul 1990		ered pop	Interpolate ulat watershed		lated po	pulatio			human	ements requirer 2002	ments o	-	
4 F	PEN	7.3148	7.4915	4.6978	4.0297	2.617	3.4618	0	1.6329	3.7251	1.8104	0	3.5527	7.3148	3.9387	PEN	7.1912	7.2795	7.3678	7.4561	7.5445	35.956	36.398	36.839	37.281	37.72
5 k	KEN	9.1279	8.9722	6.4632	5.6207	2.6647	3.3515	0	1.7447	4.8918	2.6629	0	3.5516	9.1279	5.4205	KEN	9.237	9.1591	9.0812	9.0033	8.9254	46.185	45.795	45.406	45.017	44.62
6 A	AND	16.803	16.75	10.067	9.1223	6.7358	7.6274	0	4.0412	8.6444	4.0412	0	8.3748	16.803	8.3749	AND	16.84	16.814	16.787	16.76	16.734	84.201	84.068	83.935	83.802	83.66
7 5	SAC	18.942	16.414	14.965	12.323	3.9768	4.0906	0	2.8577	12.513	8.5993	0	4.0941	18.942	12.32	SAC	20.711	19.447	18.183	16.919	15.655	103.56	97.237	90.917	84.597	78.27
8 1	MERR	153.2	141.97	26.987	33.68	126.22	108.29	0	40.258	62.302	17.735	0	98.554	153.2	43.417	MERR	161.06	155.45	149.83	144.22	138.6	805.32	777.24	749.17	721.09	693.0
9 (CHA	593.76	563.61	22.07	40.544	571.69	523.07	0	173.08	233.23	44.394	0	448.56	593.76	115.06	CHA	614.86	599.79	584.71	569.64	554.57	3074.3	2998.9	2923.6	2848.2	2772
LO E	BLA	287.46	273.75	34.53	48.253	252.93	225.5	0	85.201	115.56	24.442	0	212.73	287.46	61.026	BLA	297.05	290.2	283.35	276.49	269.64	1485.3	1451	1416.7	1382.5	1348
1 (CON	63.558	61.877	17.68	19.716	45.877	42.161	0	17.592	27.42	8.5114	0	41.701	63.558	20.176	CON	64.734	63.894	63.053	62.213	61.372	323.67	319.47	315.27	311.06	306.8
L2 H	HUD	34.312	32.516	13.773	16.571	20.54	15.945	0	7.0822	16.189	7.638	0	15.644	34.312	16.872	HUD	35.57	34.672	33.773	32.875	31.977	177.85	173.36	168.87	164.37	159.8
3 1	MOH	52.452	53.346	17.133	19.861	35.318	33.486	0	14.51	24.095	8.575	0	33.53	52.452	19.816	МОН	51.826	52.273	52.72	53.167	53.615	259.13	261.37	263.6	265.84	268.0
14 [DEL	95.237	85.51	28.568	34.791	66.669	50.719	0	22.097	41.821	15.581	0	50.149	95.237	35.361	DEL	102.05	97.182	92.319	87.456	82.592	510.23	485.91	461.59	437.28	412.9
15 5	SCH	311.17	289.63	34.931	55.27	276.24	234.35	0	96.878	126.04	18.93	0	242.28	311.17	47.342	SCH	326.25	315.48	304.71	293.93	283.16	1631.3	1577.4	1523.5	1469.7	1415
16 5	SUS	56.295	54.257	20.988	26.375	35.307	27.882	0	13.757	24.23	8.5932	0	33.396	56.295	20.861	SUS	57.722	56.703	55.684	54.665	53.645	288.61	283.51	278.42	273.32	268.2
17 F		76.494							17.524					76.494		POT							394.71			
18 F		29.576							2.8309					29.576		RAP							153.33			
	IAM	27.024							4.8397					27.024		JAM							138.11			
_	HUD_LOWE								158.31					465.81		HUD_LOWE							2358.7			
	HUD_BASIN								76.508					231.68		HUD_BASIN							1172			
	HUD_UPPER								2.2311					12.74		HUD_UPPE										
	HUD_UPPER								6.1876					31.223		HUD_UPPE										
	HUD_UPPER								11.835					54.967		HUD_UPPE										
	HUD_MOHA								15.521					54.701		HUD_MOH										
_	HUD_MOHA								11.712					46.249		HUD_MOH										
_	HUD_LOWE				32.343				23.225					85.863		HUD_LOWE										
_	HUD_LOWE								17.829					101.32		HUD_LOWE										
_	HUD_LOWE								22.731 618.93					133.15 1509.9		HUD_LOWE										
	NANI NANI																						7029.2	7429.4	1229.1	/029.
Read		Non_For	ou_crops	/ Atm	_N_Dep	Fert_N	_App //	4g_N_FIX	_ Food_	Leea_N	People	Anima	al_N_Prd	Anma	ıls / Cro	ps Ag_Census	urops_0/	02 /	Ag_censu	is_crops_	97_92_87		100%			(-

Figure 5.1.3.2. Human N consumption calculated by NANI-accounting tool.

The first table reports the population density (in persons/km²) and other auxiliary information in the Census years (1990 and 2000), calculated by multiplying the extracted numbers (people or housing units) by their proportions within the watershed, summing over all the counties, and dividing by the watershed area. The second table reports the population density interpolated or extrapolated for the Agricultural Census years (1987, 1992, 1997, 2002, and 2007) and the human requirements of N (i.e., human N consumption) calculated by multiplying the human intake of nitrogen (5 kg-N/person/year from Boyer et al. 2002) to the estimated population density. The human N consumption is used in the calculation of net food and feed imports, as described in Section 5.1.4.

5.1.4. Calculating Net Food and Feed Imports

In this section, net food and feed imports (one of the NANI components; see Figure 1.1) are calculated in the "Food_Feed_N" worksheet of the NANI-accounting tool, from the outputs stored in the "Crops", "Animals", and "People" worksheets containing the crop N production (Section 5.1.1), animal N production and N consumption (Section 5.1.2), and human N consumption (Section 5.1.3), respectively. Open the file "NANI_Budgeting_Tool.xlsm" with Excel 2007 and find the "Food_Feed_N" worksheet (Figure 5.1.4.1).

The "Food_Feed_N" worksheet contains the names of worksheets used as input (Columns A and B). Before running the calculation, the user should make sure that the following input worksheets are included in the same file and revise them as needed:

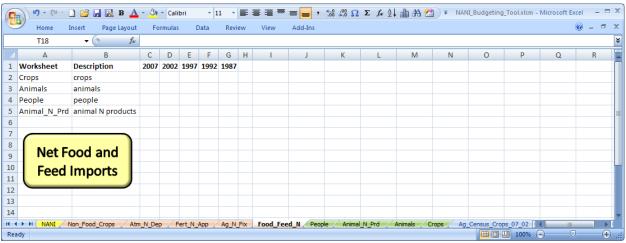


Figure 5.1.4.1. "Food_Feed_N" worksheet of NANI-accounting tool.

- A "crops" worksheet containing the crop N production calculated by the NANI-accounting tool described in Section 5.1.1 ("Crops" shown in Figure 5.1.1.2).
- An "animals" worksheet containing the animal N production and N consumption calculated by the NANI-accounting tool described in Section 5.1.2.1 ("Animals" shown in Figure 5.1.2.1.2, showing the results from the static livestock model) or Section 5.1.2.2 ("Animals" shown in Figure 5.1.2.2.2, showing the results from the dynamic livestock model).
- A "people" worksheet containing the human N consumption calculated by the NANI-accounting tool described in Section 5.1.3 ("People" shown in Figure 5.1.3.2).
- An optional "animal N products" worksheet containing the animal N production calculated by the NANI-accounting tool described in Section 5.1.2.3 ("Animal_N_Prd" shown in Figure 5.1.2.3.2).

The worksheet name for the "animal N products" can be left blank if the user chooses to calculate animal N production from the difference between the animal N consumption and animal N excretion, as described in 5.1.2.1 and 5.1.2.2. Alternatively, the user can specify the name of worksheet containing the animal N production calculated from the N content of the edible portion of animals ("Animal N Prd" in this example, as described in Section 5.1.2.3).

Columns C to G of the worksheet contain a list of years for the calculation. If the cells in these columns are left blank, the calculation will be based on the values in the corresponding years. If these cells have year numbers, the values in the user-specified years will be used instead. An example of the application of this feature can be found in Section 5.6. Cells C1 to G1 are used to specify the years for the calculation, and may be shortened or extended as appropriate for the analysis.

Click on the "Net Food and Feed Imports" button to run the calculation. The output will be generated in the same worksheet starting from Column I (Figure 5.1.4.2), reporting five horizontally arranged variables, all in the unit of kg-N/km²/yr:

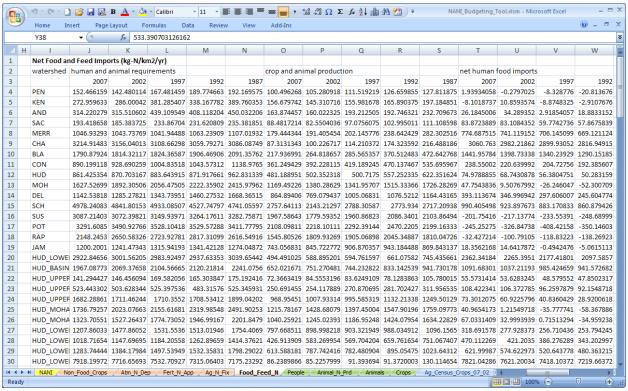


Figure 5.1.4.2. Net food and feed imports calculated by NANI-accounting tool.

- Human and Animal Requirements = Human Requirements of N (Section 5.1.3, 2nd table, 2nd variable) + Animal Requirements of N (Section 5.1.2.1, 4th table for static approach or Section 5.1.2.2, 4th table for dynamic approach)
- Crop and Animal Production = N in Human Food Products (Section 5.1.1, 5th table) + N in Animal Feed Products (Section 5.1.1, 6th table) + N in Animal Products (Milk, Meat, Eggs, etc) (Section 5.1.2.1, 6th table for static difference approach, or Section 5.1.2.2, 6th table for dynamic difference approach, or Section 5.1.2.3, 3rd table for edible portion approach)
- Net Human Food Imports = Human Requirements of N (Section 5.1.3, 2nd table, 2nd variable) N in Human Food Products (Section 5.1.1, 5th table) N in Animal Products (Milk, Meat, Eggs, etc) (Section 5.1.2.1, 6th table for static difference approach, or Section 5.1.2.2, 6th table for dynamic difference approach, or Section 5.1.2.3, 3rd table for edible portion approach)
- Net Animal Feed Imports = Animal Requirements of N (Section 5.1.2.1, 4th table for static approach or Section 5.1.2.2, 4th table for dynamic approach) N in Animal Feed Products (Section 5.1.1, 6th table)
- Net Food and Feed Imports = Human and Animal Requirements Crop and Animal Production = Net Human Food Imports + Net Animal Feed Imports

Note that the positive and negative values in the 3rd, 4th, and 5th variables represent net imports and exports of nitrogen, respectively. These variables, as well as any of the earlier intermediate results, can be linked to the input map described in Section 2 (Figure 2.2) and displayed as a map using ArcGIS. As an example, Figure 5.1.4.3 below shows the net food and feed imports in the US watersheds in 1992 calculated by the NANI-accounting tool using the static difference approach. The net food and feed imports are used in the calculation of NANI, as described in Section 5.6.

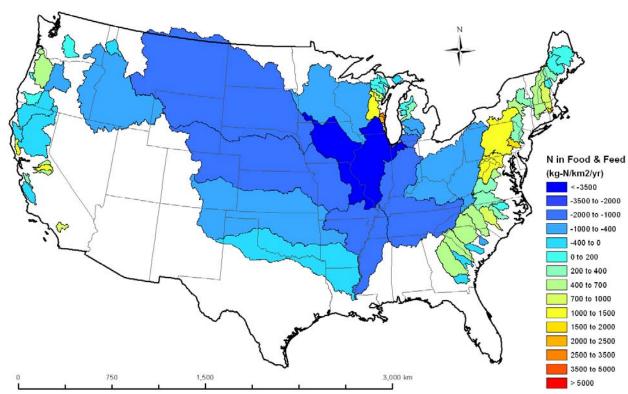


Figure 5.1.4.3. Net food and feed imports (kg-N/km²/yr) in the US watersheds in 1992.

5.2. Calculating Agricultural N Fixation

In this section, agricultural N fixation (one of the NANI components; see Figure 1.1) is calculated in the "Ag_N_Fix" worksheet of the NANI-accounting tool. Agricultural N fixation is calculated by multiplying the area-based fixation rates (Table 5.2.1) to the acreages of N fixing crops reported in Agricultural Census. Following Schaefer and Alber (2007), peanut is added to the list of N fixing crops originally used by Boyer et al. (2002), as a crop of regional importance (Table 5.2.1). Open the file "NANI_Budgeting_Tool.xlsm" with Excel 2007 and find the "Ag_N_Fix" worksheet (Figure 5.2.1).

Table 5.2.1. Crop parameters used in the calculation of agricultural N fixation. Variables in the square brackets are obtained from Agricultural Census (Sections 4.1.1.1 and 4.1.2.1) and those in the double quotation marks are derived from other variables. Parameter values were obtained from Boyer et al. (2002) and Schaefer and Alber (2007).

		N Fixation
		Rates (kg-
Name	Agricultural Census Item Name	$N/km^2/yr$)
soybeans	[soybeans for beans harvested area]	9,600
alfalfa hay	[alfalfa hay harvested area]	22,400
nonalfalfa hay	"nonalfalfa hay harvested area" a	11,700
cropland pasture	[cropland pasture area]	1,500
snap beans	[snap beans harvested area]	9,000
peanuts	[peanuts harvested area]	8,000

a "nonalfalfa hay harvested area" = [all hay harvested area] – [alfalfa hay harvested area] – [grass hay harvested area]

	M18	\overline{f}_{κ}									
1	А	В	С	D	Е	F	G	Н	I I	J	-
	Туре	Item Name	Distribute	Reporting Unit	Square Kilometers Per Reporting Unit			Worksheet	Description		
	soybeans	soybeans for beans harvested area		acres	0.00405	9600		Ag_Census_Crops_07_02	data		
	alfalfa hay	alfalfa hay harvested area		acres	0.00405	22400		Ag_Census_Crops_97_92_87	data		
	nonalfalfa hay	nonalfalfa hay harvested area		acres	0.00405	11700		Cnty_Prop	proportion		
	cropland pasture	cropland pasture area		acres	0.00405	1500					
	snap beans	snap beans harvested area		acres	0.00405	9000					
	peanuts	peanuts for nuts harvested area		acres	0.00405	8000					
	Agricul Fixa										

Figure 5.2.1. "Ag_N_Fix" worksheet of NANI-accounting tool.

The worksheet contains a list of crops for the calculation of agricultural N fixation (Column A) and their user-specified item names (Column B) that are used by the accounting tool to find the corresponding values from the output worksheets generated by the extraction tools (Figures 4.1.1.1.4 and 4.1.2.1.4). Column C, with the column heading "Distribute", provides a way of estimating values of items when they are not directly available in the database. Examples of its application can be found in Sections 5.1.2.1 and 5.1.3. The worksheet also has the reporting unit (Column D), square kilometers per reporting unit (area conversion factor) (Column E), and area-based fixation rates in kg-N/km²/yr (Column F). The values of these parameters used in this example and their references are summarized in Table 5.2.1. Since Agricultural Census reports the crop areas in acres, the conversion factors in Column E are set to "0.00405", converting them to square kilometers. More detailed consideration of the specification of the conversion factor is given in Section 5.3.

The worksheet also contains the names of worksheets used as input (Columns H and I). Before running the calculation, the user should make sure that the following input worksheets are included in the same file and revise them as needed:

- A "data" worksheet containing the county-based Agricultural Census data for the crops in 1987, 1992, and 1997, created by the NANI-extraction tool described in Section 4.1.1.1 ("Ag_Census_Crops_97_92_87" shown in Figure 4.1.1.1.4).
- A "data" worksheet containing the county-based Agricultural Census data for the crops in 2002 and 2007, created by the NANI-extraction tool described in Section 4.1.2.1 ("Ag_Census_Crops_07_02" shown in Figure 4.1.2.1.4).
- A "proportion" worksheet containing the proportions of counties falling into the watersheds of interest, created by the NANI-GIS tool described in Section 3.1 ("Cnty_Prop" shown in Figure 3.1.5).

Click on the "Agricultural N Fixation" button to run the calculation. The results will be reported in the same worksheet starting from Column K (Figure 5.2.2), summarized into two separate tables, reporting:

- Crop Area Density (km²/km²)
- Agricultural N Fixation (kg-N/km²/yr)

8	3)		sert Page			▼ 11 ▼ I	F ≣ ■ ■ v View	Add-Ins	Σ	fe 2↓ illi	₩ 😬) 🖚	NANI_Budget	ing_Tool.xlsm -	Microsoft Exc		×
		Z32	▼ (n		33014910529		v view	Add-Ins							U	×
	J	K K	1	M	N	0	Р	Q	R	S	Т	U	V	W	X	Ī
4	J	K	L	IVI	IN	U	Р	Ų	ĸ	5	- 1	U	V	VV	Α	
1		Crop Area D	ensity (km2/	/km2)												Ī
2		watershed						sovbeans					alfalfa hav			۲
3			2007	2002	1997	1992	1987	2007	2002	1997	1992	1987	2007	2002	1997	1
4		PEN	0.00513229	0.00567971	0.00571731	0.00747241	0.00784941	1.9342E-05	3.971E-05	2.349E-05	5.6968E-08	2.0279E-07	0.00035341	0.00033494	0.00029421	1
5		KEN	0.00958242	0.01169747	0.01265203	0.01509284	0.016643	3.4084E-05	4.2223E-05	7.3366E-06	7.4084E-08	2.7584E-07	0.00047389	0.0005735	0.00052768	1
6		AND	0.01154931	0.0126213	0.01304601	0.01440758	0.01646139	7.1244E-06	8.0868E-06	1.0341E-05	8.9251E-08	3.319E-07	0.00050881	0.00061098	0.00059424	
7		SAC	0.00898563	0.00862123	0.00875407	0.00916037	0.00937366	0	4.1422E-06	1.1862E-05	6.8592E-08	2.469E-07	0.00037786	0.00072183	0.0004413	
8		MERR	0.01593878	0.01647641	0.01682535	0.0187861	0.02114447	0	8.9619E-06	2.3698E-05	1.0828E-07	4.1524E-07	0.00123601	0.0019004	0.00215804	
9		CHA	0.01150458	0.01257135	0.01236067	0.01627604	0.02219249	0	1.1277E-05	8.7607E-06	7.2458E-08	3.1039E-07	0.00073278	0.00134358	0.00207317	
10		BLA	0.01966019	0.02311152	0.02311689	0.02629028	0.03335099	0	3.6583E-05	1.3885E-05	1.4071E-07	5.6279E-07	0.00169623	0.00362647	0.00291956	
11		CON	0.02235933	0.02567678	0.02944029	0.03383572	0.03862393	5.6699E-05	4.0804E-05	6.149E-05	1.6567E-05	6.5428E-07	0.00179541	0.0026458	0.00264359	
12		HUD	0.02385715	0.02924291	0.02832962	0.03067157	0.03476658	0.00015213	0.00024816	0.00016742	6.9774E-05	1.8967E-05	0.00639231	0.00833246	0.00828885	
13		MOH	0.06578215	0.09491797	0.08416586	0.09349543	0.10722457	0.00169707	0.00166304	0.00083788	0.00037332	0.00027704	0.020922	0.03297588	0.02814398	ı
14		DEL	0.05234482	0.06540026	0.06450004	0.06462385	0.06941004	0.009361	0.00947882	0.00878164	0.00801824	0.00597365	0.00628949	0.00941828	0.00938556	ı
15		SCH	0.09277458	0.09990161	0.10607835	0.09996598	0.10096104	0.03179866	0.03027793	0.03068435	0.02735828	0.01718872	0.01802758	0.02497866	0.02617625	
16		SUS	0.08247314	0.09941897	0.09661129	0.0946239	0.09922216	0.01366817	0.01286251	0.01179368	0.00903033	0.00572386	0.01757916	0.02525792	0.02491737	
17		POT	0.10595155	0.14133583	0.15025484	0.14601364	0.14349105	0.01353786	0.01365837	0.01488448	0.01042981	0.00543923	0.01086402	0.01516952	0.01448742	
18		RAP	0.14035099	0.19600373	0.20088754	0.19279021	0.19530927	0.01379645	0.01411313	0.01226979	0.00678986	0.00393137	0.00467153	0.00893102	0.00721294	ı
19		JAM	0.0661741	0.10687448	0.11111981	0.10670595	0.10205139	0.00128796	0.00118743	0.00068338	0.00086728	0.00064366	0.00276483	0.00451154	0.00388851	ı
20		HUD_LOWE	0.0364401	0.04935785	0.04548213	0.04571476	0.05073306	0.00068451	0.00065	0.0005472	0.00039247	0.00018022	0.00738957	0.01235516	0.01036856	ı
21		HUD_BASIN	0.03952185	0.05395643	0.04936478	0.05243427	0.05924975	0.00075932	0.00076611	0.00049761	0.00028673	0.00015277	0.01031476	0.01602598	0.01396932	ı
22		HUD_UPPER	0.00561896	0.00701519	0.00717708	0.00730356	0.00781565	0.00017868	8.5626E-06	8.5108E-05	5.4787E-06	5.3765E-06	0.00134302	0.00239596	0.00190399	ı
23								2.5486E-05						0.00491144		ı
24		HUD_UPPER	0.04549363	0.05638449	0.05418868	0.05862858	0.0671937	0.00019883	0.00049492	0.00030771	0.00015926	3.554E-05	0.01217198	0.01545832	0.01566544	ı
25		HUD_MOHA	0.06281469	0.09094084	0.08016967	0.09026288	0.10418988	0.00214158				0.00031631	0.02121349	0.0326853	0.02802487	
26						0.10246149				0.0006254				0.03377024		
27		_						0.00154363								
28		HUD_LOWE	0.03541925	0.05352472	0.04573161	0.04744476	0.05230508	1.0123E-05	0.00017898	0.00040031	2.4366E-05	0.0001099	0.00543032	0.01005033	0.00805773	-
		NANI No	n_Food_Crops	/ Atm_N_De	p / Fert_N_A	App Ag_N_F	ix Food_Fee	ed_N / People	Animal_N	_Prd / Anima	s / Crops /		crops_07_02)	
Rea	dy											Œ	100	% 😑	- - -	.;

Figure 5.2.2. Agricultural N fixation calculated by NANI-accounting tool.

The first table (crop area density) is created by converting the reporting units (acres) into square kilometers by multiplying by the area conversion factors (Column E) and then by their proportions within the watershed, summing over all the counties, and dividing by the watershed area. The second table is created by multiplying the crop area densities by the area-based fixation rates (Column F) to obtain the agricultural N fixation.

These variables, as well as any of the intermediate results, can be linked to the input map described in Section 2 (Figure 2.2) and displayed as a map using ArcGIS. As an example, Figure 5.2.3 shows the agricultural N fixation in the US watersheds in 1992 calculated by the NANI-accounting tool. The agricultural N fixation is used in the calculation of NANI, as described in Section 5.6.

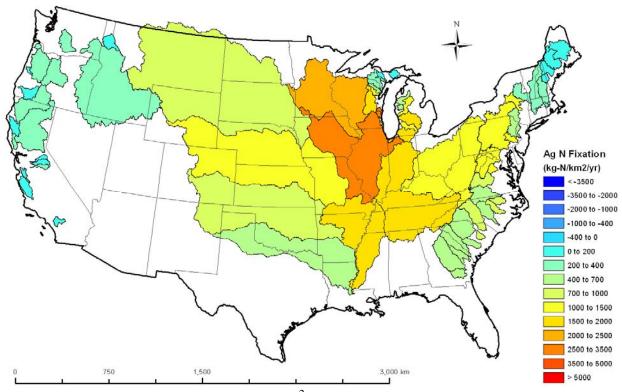


Figure 5.2.3. Agricultural N fixation (kg-N/km²/yr) in the US watersheds in 1992.

5.3. Calculating Fertilizer N Application

In this section, fertilizer N application (one of the NANI components; see Figure 1.1), obtained from USGS nutrient input estimates (Section 4.3), is calculated in the "Fert_N_App" worksheet of the NANI-accounting tool. Open the file "NANI_Budgeting_Tool.xlsm" with Excel 2007 and find the "Fert_N_App" worksheet (Figure 5.3.1). The worksheet contains a list of items for the calculation of fertilizer N application and other auxiliary variables (Column A) and their user-specified item names (Column B) that are used by the accounting tool to find the corresponding values from the output worksheets generated by the extraction tools (Figure 4.3.4). Column C, with the column heading "Distribute", provides a way of estimating values of items when they are not directly available in the database. Examples of its application can be found in Sections 5.1.2.1 and 5.1.3. The "Fert_N_App" worksheet also has the reporting units (Column D) and kilograms of nutrient inputs per reporting unit (conversion factor) (Column E).

Since USGS nutrient input estimates are reported as amount of application in kilograms (of N or P), the conversion factors in Column E are set to "1" (no conversion). The data may be reported as area-based rates of application in other databases, for example kilograms of nutrient input per square kilometer. In such a case, the conversion factor can be specified as "[AREA]", indicating that the extracted data are area-based. Multiplication factors may be added to the expression, for example " $1000 \times [AREA]$ " or " $1000 \times [AREA]$ " to convert the extracted data in metric tons per square kilometer to kilograms of nutrient input.

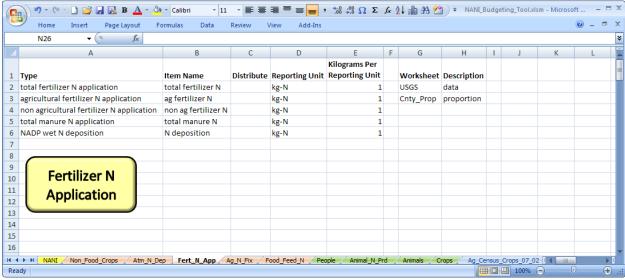


Figure 5.3.1. "Fert_N_App" worksheet of NANI-accounting tool.

The worksheet also contains the names of worksheets used as input (Columns G and H). Before running the calculation, the user should make sure that the following input worksheets are included in the same file and revise them as needed:

- A "data" worksheet containing the county-based USGS nutrient input estimates, created by the NANI-extraction tool described in Section 4.3 ("USGS" shown in Figure 4.3.4).
- A "proportion" worksheet containing the proportions of counties falling into the watersheds of interest, created by the NANI-GIS tool described in Section 3.1 ("Cnty_Prop" shown in Figure 3.1.5).

Click on the "Fertilizer N Application" button to run the calculation. The output will be generated in the same worksheet starting from Column J (Figure 5.3.2), reporting horizontally arranged variables as listed by the user in Column A, all in the unit of kg-N/km²/yr. These values are calculated by converting the extracted values into kilograms of N or P by applying the conversion factors (as specified in Column E) and multiplying by their proportions within the watershed, summing over all the counties, and dividing by the watershed area.

These variables, as well as any of the auxiliary information, can be linked to the input map described in Section 2 (Figure 2.2) and displayed as a map using ArcGIS. As an example, Figure 5.3.3 shows the fertilizer N application in the US watersheds in 1992 calculated by the NANI-accounting tool. The fertilizer N application is used in the calculation of NANI, as described in Section 5.6. Note that the NANI-accounting tool assumes that the first item listed in the "Fert_N_App" worksheet (i.e., "total fertilizer N application" in Row 2) is the NANI component used in the NANI calculation in Section 5.6. Thus, for example, if the user wants to use the "agricultural fertilizer N application" instead (Row 3) for the calculation of NANI, the item must be placed first on the list.

					ata Reviev	v View	Add-Ins								0 - =
	AB32	- (9	Jx 95.75	94969205764											
4 1	J	K	L	M	N	0	Р	Q	R	S	T	U	V	W	X
	Fertilizer N	Application	(kg-N/km2/y	r)											
	watershed	total fertiliz	er N applica				agricultural	fertilizer N a	application			non agricult	ural fertilize	r N applicat	
1		2007		1997	1992	1987	2007	2002		1992	1987	2007	2002	1997	
	PEN	126.207728	126.207728	139.021317	94.0997127	97.0106005	119.181883	119.181883	136.239505	91.1224822	91.7605533	7.02584538	7.02584538	2.78181179	2.9772304
	KEN	66.2290282	66.2290282	72.0073311	54.9649225	59.5786672	56.2231184	56.2231184	68.0876065	50.8656429	52.4628013	10.0059098	10.0059098	3.91972461	4.0992796
	AND	124.444359	124.444359	130.940698	93.0612194	95.4181118	102.270137	102.270137	122.072059	83.8940256	79.7878094	22.1742213	22.1742213	8.86863946	9.1671937
	SAC	81.8210412	81.8210412	81.9213909					72.0158119						
	MERR	329.43394	329.43394	344.786493	220.38489	167.979392	141.916847	141.916847	144.134939	120.560243	120.892433	187.517093	187.517093	200.651555	99.824647
	CHA	885.595281	885.595281	1098.11609	607.860556	382.299361	215.45886	215.45886	122.344317	178.637815	161.554141	670.136421	670.136421	975.771776	429.2227
	BLA	451.328275	451.328275	452.87896	365.510872	292.933094	216.576617	216.576617	150.253414	219.621175	252.140437	234.751659	234.751659	302.625545	145.88969
	CON	321.234268	321.234268	269.667329	239.895859	248.740925	272.654703	272.654703	210.207206	209.324152	233.047241	48.5795653	48.5795653	59.4601232	30.57170
	HUD	207.282395	207.282395	180.469966	267.854119	214.280435	184.793756	184.793756	160.989504	252.54676	208.046175	22.4886382	22.4886382	19.4804618	15.307359
	MOH	413.964129	413.964129	343.293552	490.864812	422.289687	374.386374	374.386374	309.580803	461.23178	409.723563	39.5777544	39.5777544	33.7127491	29.633032
	DEL	508.175607	508.175607	630.484163	511.756919	485.020766	415.535897	415.535897	547.454556	474.349895	467.000316	92.6397097	92.6397097	83.0296069	37.40702
	SCH	1783.12925	1783.12925	1789.97919	1289.51876	1250.19264	1501.32384	1501.32384	1501.70034	1192.25083	1182.16355	281.805411	281.805411	288.278857	97.267927
	SUS	601.990853	601.990853	732.14022	611.109295	624.013095	562.721498	562.721498	691.891598	594.217809	613.401765	39.2693551	39.2693551	40.2486224	16.8914
	POT	940.165383	940.165383	1068.9942	1074.50969	989.581321	843.185946	843.185946	983.53622	1021.61551	953.933493	96.9794369	96.9794369	85.4579821	52.894175
	RAP	972.501726	972.501726	987.89847	1244.91719	891.118625	946.591351	946.591351	967.098448	1229.9513	884.144746	25.9103748	25.9103748	20.8000223	14.96588
	JAM	360.976743	360.976743	375.117809	456.256608	322.972651	334.857232	334.857232	352.007548	438.240928	313.151443	26.1195113	26.1195113	23.1102602	18.015680
	HUD_LOWE	644.237256	644.237256	509.477797	549.310009	437.931179	324.73626	324.73626	270.676798	358.117734	375.107233	319.500996	319.500996	238.800999	191.19227
	HUD_BASIN	452.317383	452.317383	366.730638	447.326302	364.234803	292.870256	292.870256	245.729655	349.907643	331.169141	159.447127	159.447127	121.000983	97.41865
	HUD_UPPER	24.5379175	24.5379175	23.3929231	33.8365582	26.5362184	18.3925128	18.3925128	18.3442037	29.6768897	24.8732246	6.14540468	6.14540468	5.04871946	4.159668
	HUD_UPPER	109.045308	109.045308	96.3471631	107.240761	104.493255	87.7614444	87.7614444	79.2390398	93.1967029	99.0111789	21.2838632	21.2838632	17.1081233	14.044057
	HUD_UPPER	422.587291	422.587291	365.493291	563.166269	440.507777	385.088155	385.088155	332.033779	537.368524	429.840908	37.4991355	37.4991355	33.4595118	25.797744
	HUD_MOHA	420.450641	420.450641	358.24058	524.601295	448.057346	379.336642	379.336642	323.154785	493.595258	434.871104	41.1139988	41.1139988	35.0857944	31.006036
	HUD_MOHA	395.912515	395.912515	301.716849	396.867792	350.502477	360.557681	360.557681	271.781909	371.01973	339.647319	35.3548346	35.3548346	29.9349397	25.848061
	HUD_LOWE	497.419403	497.419403	406.265023	498.707867	452.499347	427.480749	427.480749	347.097919	448.412293	431.224746	69.9386547	69.9386547	59.1671042	50.29557
	HUD_LOWE	438.842656	438.842656	393.090333	508.180783	501.347777	344.961353	344.961353	323.081387	452.450729	482.220403	93.8813025	93.8813025	70.0089464	55.730053

Figure 5.3.2. Fertilizer N application calculated by NANI-accounting tool.

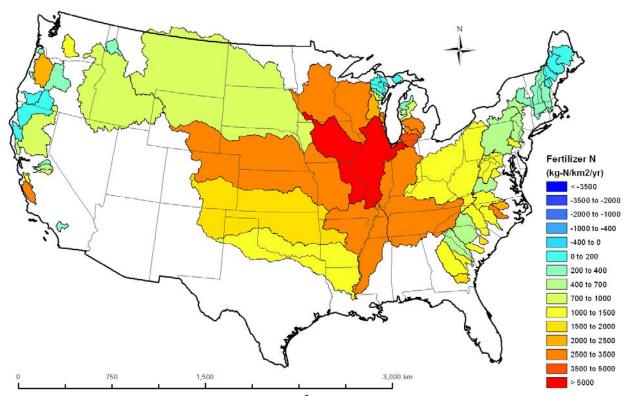


Figure 5.3.3. Fertilizer N application (kg-N/km²/yr) in the US watersheds in 1992.

5.4. Calculating Atmospheric N Deposition

In this section, atmospheric N deposition (one of the NANI components; see Figure 1.1), obtained from CMAQ deposition estimates (Section 4.4), is calculated in the "Atm_N_Dep" worksheet of the NANI-accounting tool. Open the file "NANI_Budgeting_Tool.xlsm" with Excel 2007 and find the "Atm_N_Dep" worksheet (Figure 5.4.1).

	n	- 🖎 - Calibri	- 11 - ■	===	= , *.0 .00 Ω	Σ	fx Å↓ illi	#A 23) = 1	IANI_	_Budgeting_T	ool.xlsm -	- □ X
	Home Insert Page Layout	Formulas Dat	a Review	View Ad	d-Ins						0 .	- = ×
	N20 ▼ (f _x											*
4	А	В	С	D	Е	F	G	Н	1	J	K	L 👗
1	Туре	Item Name	Distribute	Reporting Unit	Kilograms Per Reporting Unit		Worksheet	Description				
2	oxidized annual N deposition	ox ann N dep		kg-N	1		CMAQ	data				
3	reduced annual N deposition	red ann N dep		kg-N	1		Grid_Prop	proportion				
4	annual N deposition	ann N dep		kg-N	1							
5	dry oxidized annual N deposition	dry ox ann N dep		kg-N	1							
6	wet oxidized annual N deposition	wet ox ann N dep		kg-N	1							
7	dry reduced annual N deposition	dry red ann N dep		kg-N	1							
8	wet reduced annual N deposition	wet red ann N dep		kg-N	1							
9												_
10 11 12	Atmospheric N											
13 14	Deposition											
15 16												
17												
14 -4		n_N_Dep Fert_N_App	Ag_N_Fix	Food_Feed_N	People / Anima	l_N_	Prd / Animals			Census_Crops_		
Rea	idy								<u> </u>	.00% 😑		- .::

Figure 5.4.1. "Atm_N_Dep" worksheet of NANI-accounting tool.

The worksheet contains a list of items for the calculation of atmospheric N deposition and other auxiliary variables (Column A) and their user-specified item names (Column B) that are used by the accounting tool to find the corresponding values from the output worksheets generated by the extraction tools (Figure 4.4.3). Column C, with the column heading "Distribute", provides a way of estimating values of items when they are not directly available in the database. Examples of its application can be found in Sections 5.1.2.1 and 5.1.3. The "Atm_N_Dep" worksheet also has the reporting units (Column D) and kilograms of deposition per reporting unit (conversion factor) (Column E). Since CMAQ deposition estimates are reported as amount of deposition in kilograms of nutrients, the conversion factors in Column E are set to "1" (no conversion). Detailed consideration of the specification of the conversion factor is given in Section 5.3.

The worksheet also contains the names of worksheets used as input (Columns G and H). Before running the calculation, the user should make sure that the following input worksheets are included in the same file and revise them as needed:

• A "data" worksheet containing the CMAQ grid-based deposition estimates, created by the NANI-extraction tool described in Section 4.4 ("CMAQ" shown in Figure 4.4.3).

• A "proportion" worksheet containing the proportions of CMAQ grid cells falling into the watersheds of interest, created by the NANI-GIS tool described in Section 3.2 ("Grid_Prop" shown in Figure 3.2.5).

Click on the "Atmospheric N Deposition" button to run the calculation. The output will be generated in the same worksheet starting from Column J (Figure 5.4.2), reporting horizontally arranged variables as listed by the user in Column A, all in the unit of kg-N/km²/yr. These values are calculated by converting the extracted values into kilograms of nutrients by applying the conversion factors (as specified in Column E) and multiplying by their proportions within the watershed, summing over all the grids, and dividing by the watershed area.

	Home Insert	B A → → Calibri → Page Layout Formulas Data		, 58 28 Ω Σ & 2↓ ili A			(i) _ =
	R36 ▼ (a)	f _x					
4 1	J	К	L	M	N	0	Р
L	Atmospheric N Dep	osition (kg-N/km2/yr)					
!	watershed	oxidized annual N deposition	reduced annual N deposition		dry oxidized annual N depositi	wet oxidized annual N deposit	dry reduced annual N depos
		2002	2002	2002	2002	2002	200
	PEN	249.5063922	133.5960456	383.1024377	135.8783908	113.6279988	38.898322
	KEN	292.1255887	165.9550864	458.0806751	157.6634274	134.4621618	57.906318
	AND	343.440325	169.437144	512.877469	181.2804825	162.1598482	53.140008
	SAC	399.9426728	161.4429068	561.3855795	212.9769888	186.9656873	40.833045
	MERR	559.7236753	233.0173263	792.7410016	347.1040477	212.6196325	88.599097
	CHA	879.1292481	392.9134888	1272.042737	627.2526554	251.8765691	188.53906
	BLA	816.4782303	328.0128936	1144.491124	569.2593438	247.2188806	144.0097
	CON	532.984509	255.8375901	788.8220992	306.3795943	226.6049101	98.377868
	HUD	547.3215391	267.0122439	814.333783	295.3738492	251.9476919	90.732799
	MOH	635.7171473	420.0853516	1055.802499	326.525116	309.1920249	177.70544
	DEL	812.4237112	376.3584306	1188.782142	486.2442814	326.1794221	133.45823
	SCH	931.3064691	786.2895507	1717.59602	587.1020361	344.2044494	441.0839
	SUS	749.7320934	513.4627463	1263.19484	441.1517124	308.5803854	238.5094
	POT	718.6792574	573.534445	1292.213702	479.3652321	239.3140252	314.5863
	RAP	711.4131643	539.6229481	1251.036112	452.6971454	258.7160101	266.7930
	JAM	646.7460355	317.5800515	964.326087	425.2646641	221.4813683	112.998
	HUD_LOWER	845.7855798	405.2418668	1251.027447	540.2450448	305.5405408	169.38590
	HUD BASIN	701.9979394	365.4791579	1067.477097	412.3844719	289.6134692	146.74112
	HUD UPPER 01	489.1975429	206.422471	695.6200139	260.0773211	229.1202271	51.679589
	HUD UPPER 02	558.3731962	263.5143953	821.8875915	275.2312023	283.1420165	66.416450
	HUD_UPPER_03	592.3032319	322.3063156	914.6095475	337.5450489	254.7581707	138.60258
	HUD_MOHAWK_01	636.5991781	431.6142934	1068.213472	319.9282799	316.670889	183.4297
	HUD_MOHAWK_02	633.2683155	387.9688919	1021.237207	344.9064068	288.3619101	161.77311
	HUD_LOWER_01	683.3298307	317.3808062	1000.710637	407.2028943	276.1269361	122.8107
	HUD LOWER 02	761.3802453	341.4645437	1102.844789	454.0419828	307.3382834	122.05929
1	NANI Non Food C	Crops Atm_N_Dep Fert_N_App	Ag_N_Fix / Food_Feed_N / Pe	coole / Animal N Prd / Animals	Crops Ag Census Crops 07_02	Ag_Census_Crops_97_92_87	4

Figure 5.4.2. Atmospheric N deposition calculated by NANI-accounting tool.

These variables, as well as any of the auxiliary information, can be linked to the input map described in Section 2 (Figure 2.2) and displayed as a map using ArcGIS. As an example, Figure 5.4.3 shows the atmospheric N deposition in the US watersheds in 2002 calculated by the NANI-accounting tool. (As discussed in Section 4.4, currently the CMAQ deposition estimates are available only for the year of 2002.) The atmospheric N deposition is used in the calculation of NANI, as described in Section 5.6. Note that the NANI-accounting tool assumes that the first item listed in the "Atm_N_Dep" worksheet (i.e., "oxidized annual N deposition" in Row 2) is the NANI component used in the NANI calculation in Section 5.6. Thus, for example, if the user wants to use the "annual N deposition" instead (Row 4) for the calculation of NANI, the item must be placed first on the list. In this analysis, atmospheric N deposition includes only the oxidized form, assuming that most of the ammonia/ammonium emission from a watershed is redeposited on the same watershed (Howarth et al. 1996, 2006).

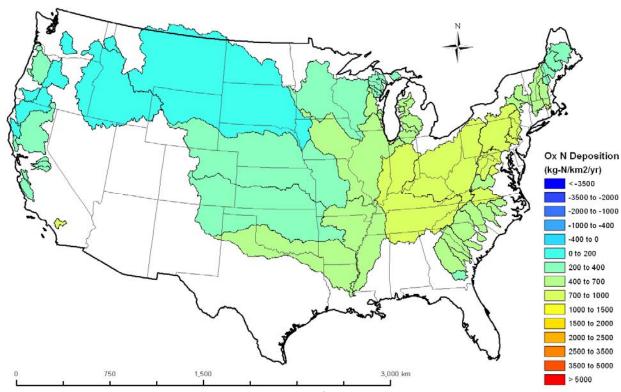


Figure 5.4.3. Atmospheric N deposition (kg-N/km²/yr) in the US watersheds in 2002.

5.5. Calculating Non-Food Crop Exports

Following Schaefer and Alber (2007), who treated the nitrogen contained in cotton and tobacco production (that are not consumed by human and animals as food and feed) as "non-food crop exports", a module calculating the non-food crop exports was added to the toolbox, calculating the nitrogen in cotton and tobacco harvested for sale and exported elsewhere for non-food use. The non-food crop exports are calculated in the "Non_Food_Crops" worksheet of the NANI-accounting tool. Open the file "NANI_Budgeting_Tool.xlsm" with Excel 2007 and find the "Non Food Crops" worksheet (Figure 5.5.1).

The worksheet contains a list of crops for the calculation of non-food crop exports (Column A) and their user-specified item names (Column B) that are used by the accounting tool to find the corresponding values from the output worksheets generated by the extraction tools (Figures 4.1.1.1.4 and 4.1.2.1.4). Column C, with the column heading "Distribute", provides a way of estimating values of items when they are not directly available in the database. Examples of its application can be found in Sections 5.1.2.1 and 5.1.3. The "Non_Food_Crops" worksheet also has the crop parameters that are needed for the calculation of non-food crop exports, including the reporting unit (Column D), kilograms per reporting unit (Column E), percent dry matter (Column F), percent N in dry matter (Column G), percent loss of N during the processing (Column H), and percent exported or converted to an "unavailable" form (Column I). The values of these parameters for the cotton and tobacco are given in Table 5.1.1.1.

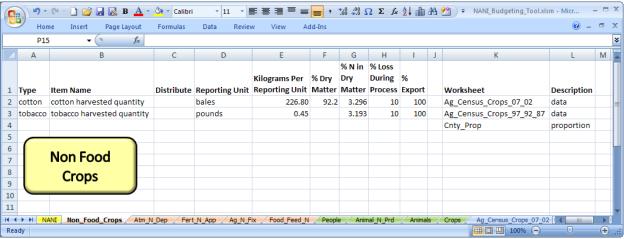


Figure 5.5.1. "Non_Food_Crops" worksheet of NANI-accounting tool.

The worksheet also contains the names of worksheets used as input (Columns K and L). Before running the calculation, the user should make sure that the following input worksheets are included in the same file and revise them as needed:

- A "data" worksheet containing the county-based Agricultural Census data for the crops in 1987, 1992, and 1997, created by the NANI-extraction tool described in Section 4.1.1.1 ("Ag_Census_Crops_97_92_87" shown in Figure 4.1.1.1.4).
- A "data" worksheet containing the county-based Agricultural Census data for the crops in 2002 and 2007, created by the NANI-extraction tool described in Section 4.1.2.1 ("Ag_Census_Crops_07_02" shown in Figure 4.1.2.1.4).
- A "proportion" worksheet containing the proportions of counties falling into the watersheds of interest, created by the NANI-GIS tool described in Section 3.1 ("Cnty_Prop" shown in Figure 3.1.5).

Click on the "Non Food Crops" button to run the calculation. The results will be reported in the same worksheet starting from Column N (Figure 5.5.2), summarized into four separate tables, reporting:

- Non Food Crop Production (kg/km²/yr)
- Non Food Crop N Production (kg-N/km²/yr)
- N in Non Food Crop Products (e.g. Cotton) (kg-N/km²/yr)
- Non Food Crop N Export (kg-N/km²/yr)

The first table is created by converting the reporting units into kilograms of biomass by multiplying by the conversion factors (Column E) and then by their proportions within the watershed, summing over all the counties, and dividing by the watershed area. The second table is created by converting them into kilograms of nitrogen by multiplying by the percent dry matter (Column F) and then the percent nitrogen (Column G). These conversion factors may not be reported separately in the original literature but as combined (i.e., pre-multiplied) factors. The combined factors may be entered in either Column F or G, while leaving the other column blank (e.g., Cells F3 and G3).

				ormulas D	ata Reviev	v View	Add-Ins									0 - =
	AF36	- (9	fx													
M	N	0	Р	Q	R	S	T	U	V	W	X	Υ	Z	AA	AB	AC
	N Fd O	Bdd.	11 11 21	L												
	Non Food Co watershed		on (kg/km2/	yr)			cotton					tobacco				
	watersneu	2007	2002	1997	1992	1987	2007	2002	1997	1992	1987	2007	2002	1997	1992	19
	PEN	2007		0.01113638			2007		0.01081754	1552		2007		0.00031884		
	KEN	0		0.01113035			0		0.01081734	0		0		0.00031004		
	AND	0	-	0.01718047			0	-	0.01668858	0	0	0	-	0.00049188		
	SAC	0		0.01332582			0		0.0129443	0	0	0		0.00038152		
	MERR	0	0	2.00515703	1.45339701	1.31006646	0	0	0.02230383	0	0	0	0	1.98285319	1.45339701	1.310066
	CHA	0	0	5.87137828	4.09883437	3.92890634	0	0	0.01373867	0	0	0	0	5.85763961	4.09883437	3.928906
	BLA	0	0	9.28573738	6.99359132	6.19980015	0	0	0.02567623	0	0	0	0	9.26006114	6.99359132	6.199800
	CON	52.1291049	50.483601	52.4142066	11.0956143	12.3261719	0	0	0.03436502	0	0	52.1291049	50.483601	52.3798416	11.0956143	12.32617
2	HUD	0	0	0.48881584	0.30467951	0.26757723	0	0	0.02718468	0	0	0	0	0.46163116	0.30467951	0.26757
3	MOH	0	0	0.06494071	0.00037898	0.00170557	0	0	0.06308143	0	0	0	0	0.00185927	0.00037898	0.001705
1	DEL	0.29649077	0.17557614	0.13946685	0.17813529	0.33107633	0	0	0.05115394	0	0	0.29649077	0.17557614	0.08831291	0.17813529	0.331076
5	SCH	39.0851737	19.3697056	26.8603683	18.4446139	15.9972008	0	0	0.08368135	0	0	39.0851737	19.3697056	26.776687	18.4446139	15.99720
i	SUS	99.6890177	51.3746527	93.0218867	86.2374346	69.0190301	0		0.08039677	0				92.9414899		
7	POT			3.8837077			0				0.20932056					
8	RAP	0	-	10.9665419			0		7.78397804			0		3.18256384		
9	JAM			26.9097902			0				0.37970394					
0	HUD_LOWE			0.1168287			0		0.0382254	0	0			0.0786033		
1	HUD_BASIN			0.22090648			0		0.04072391	0	-			0.18018257		
2	HUD_UPPER			0.00704233			0		0.0068407	0		0		0.00020162		
1	HUD_UPPER		-	1.16980245			0		0.01413692	0	0	0		1.1174576		
	HUD MOHA			0.06316717			0		0.05234460	0	0	0	_	0.00180849		
_	NANI No			p / Fert_N_A			-		Prd Anima		Ag Census C	-		_Crops_97_92_		0.001073

Figure 5.5.2. Non-food crop exports calculated by NANI-accounting tool.

The third table is created by applying the proportions lost during the processing (specified in Column H) and the fourth table is created by applying, in turn, the percent exported or converted to an "unavailable" form (specified in Column I), resulting in the non-food crop exports. The non-food crop exports may be used in the calculation of NANI, as described in Section 5.6. (Inclusion of non-food crop exports in the NANI calculation is optional.)

5.6. Calculating NANI

In this section, net anthropogenic nitrogen inputs are calculated in the "NANI" worksheet of the NANI-accounting tool, from the outputs stored in the "Food_Feed_N", "Ag_N_Fix", "Fert_N_App", "Atm_N_Dep", and "Non_Food_Crops" worksheets containing the net food and feed imports (Section 5.1.4), agricultural N fixation (Section 5.2), fertilizer N application (Section 5.3), atmospheric N deposition (Section 5.4), and non-food crop exports (Section 5.5), respectively. Open the file "NANI_Budgeting_Tool.xlsm" with Excel 2007 and find the "NANI" worksheet (Figure 5.6.1).

The "NANI" worksheet contains the names of worksheets used as input (Columns A and B). Before running the calculation, the user should make sure that the following input worksheets are included in the same file and revise them as needed (note that the worksheet name for the "non food crop export" can be left blank if the user chooses to calculate NANI without including the non-food crop exports):

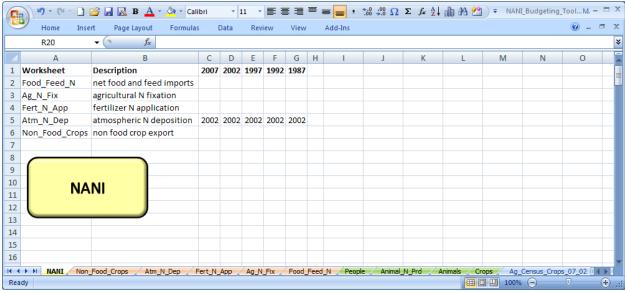


Figure 5.6.1. "NANI" worksheet of NANI-accounting tool.

- A "net food and feed imports" worksheet containing the net food and feed imports calculated by the NANI-accounting tool described in Section 5.1.4 ("Food_Feed_N" shown in Figure 5.1.4.2).
- An "agricultural N fixation" worksheet containing the agricultural N fixation calculated by the NANI-accounting tool described in Section 5.2 ("Ag_N_Fix" shown in Figure 5.2.2).
- A "fertilizer N application" worksheet containing the fertilizer N application calculated by the NANI-accounting tool described in Section 5.3 ("Fert_N_App" shown in Figure 5.3.2).
- An "atmospheric N deposition" worksheet containing the atmospheric N deposition calculated by the NANI-accounting tool described in Section 5.4 ("Atm_N_Dep" shown in Figure 5.4.2).
- An optional "non food crop export" worksheet containing the non-food crop exports calculated by the NANI-accounting tool described in Section 5.5 ("Non_Food_Crops" shown in Figure 5.5.2).

Columns C to G of the "NANI" worksheet contain a list of years for the calculation. If the cells in these columns are left blank, the calculation will be based on the values in the corresponding years. If these cells have year numbers, the values in the user-specified years will be used instead. In this analysis, the 2002 estimates of atmospheric N deposition obtained from CMAQ are applied for all years of calculation (1987, 1992, 1997, and 2007, as well as 2002), by specifying Cells C5 to G5 as "2002". (As discussed in Section 4.4, currently the CMAQ deposition estimates are available only for the year of 2002.) Cells C1 to G1 are used to specify the years for the NANI calculation, and may be shortened or extended as appropriate for the analysis.

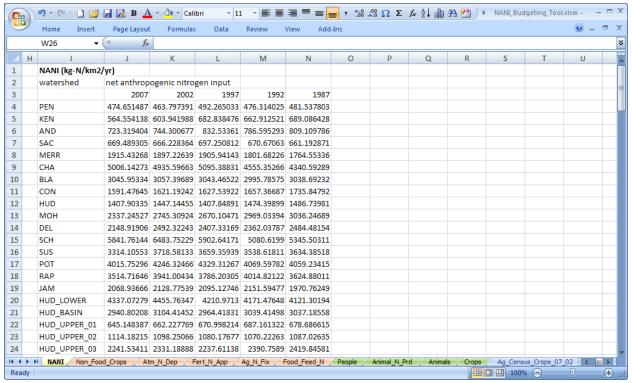


Figure 5.6.2. NANI calculated by NANI-accounting tool.

Click on the "NANI" button to run the calculation. NANI in kg-N/km²/yr will be reported in the same worksheet starting from Column I (Figure 5.6.2), calculated as the sum of the following components as shown in Figure 1.1:

- Net Food and Feed Imports (Section 5.1.4, 5th variable)
- Agricultural N Fixation (Section 5.2, 2nd table)
- Fertilizer N Application (Section 5.3, 1st variable)
- Atmospheric N Deposition (Section 5.4, 1st variable)

In addition, if the user chooses to include the non-food crop exports, the following component will be subtracted:

• Non Food Crop N Export (Section 5.5, 4th table)

These variables, as well as any of the earlier intermediate results, can be linked to the input map described in Section 2 (Figure 2.2) and displayed as a map using ArcGIS. As an example, Figure 5.6.3 shows NANI in the US watersheds in 1992 calculated by the NANI-accounting tool, with the animal calculation based on the static difference approach (Section 5.1.2.1), with the atmospheric N deposition including only the oxidized form in 2002 (Section 5.4), and with the non-food crop exports included (Section 5.5).

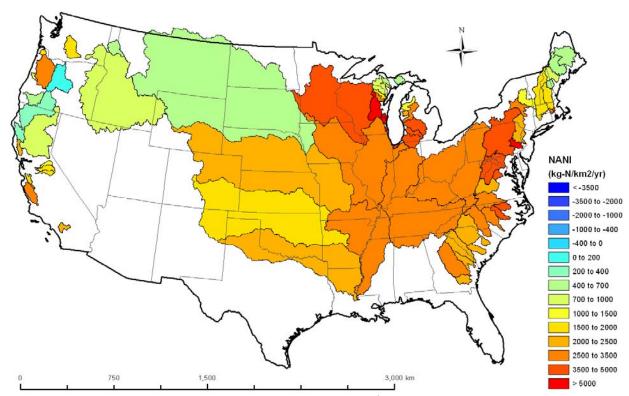


Figure 5.6.3. Net anthropogenic nitrogen inputs (kg-N/km²/yr) in the US watersheds in 1992.

6. Ongoing and future developments

The NANI Calculator Toolbox described in this document is intended to facilitate the application of NANI at the national scale, representing the first phase of our efforts to develop a set of user-friendly tools that, collectively, allow the user to estimate the human-induced nitrogen inputs anywhere in the contiguous United States simply from an input map of areas of interest. Further improvements to the current version of the toolbox would facilitate its application to other areas, both geographically and contextually. Below are the areas of improvements that we are currently focusing on.

- Expanding databases read by the NANI-extraction tool: In developing the extraction tools of the NANI Calculator Toolbox, it was our intent to keep the structure of the databases close to their original forms as obtained from the Web, minimizing the effort the user has to invest as new databases become available. Currently, the extraction tools of the toolbox read a variety of databases (e.g., Agricultural Census, Census, CMAQ output, etc.), and more extraction tools are being developed for other generally available databases, including outside the US (e.g., European databases). Users with their own datasets may find it desirable to reformat their datasets similar to one of the databases included in the package if their data structure is not compatible with them.
- Allowing spatial and temporal variations in NANI parameters: The current version of the toolbox assumes fixed values for all the NANI parameters, limiting its applicability to incorporating the real regional variations in crops, animals, and people, and evaluating their impacts on NANI. Allowing spatial variation of the NANI parameters can be an important and practical functionality for the application of toolbox to multiple coastal watersheds from several countries draining to international waters, which may be subject to varying agronomic practices and substantially different dietary preferences (Eriksson Hägg et al. 2010), while allowing temporal variation would be useful in assessing the historical changes in human-induced nitrogen inputs.
- Adding sensitivity and uncertainty analysis features: A virtue of the NANI Calculator Toolbox is to make it easy to estimate error propagation from either known standard errors in the data, or assumptions about uncertainties in parameters. All the parameters and assumptions applied in the NANI calculation are given in the worksheets of the accounting tool, making it feasible to develop additional tools of sensitivity/uncertainty estimation, running the NANI calculation multiple times with alternative parameters and assumptions.
- Applying a similar approach to other nutrients: Similar watershed-scale nutrient accounting approaches considering anthropogenic inputs of other nutrients have been applied in other studies, e.g., phosphorus (Russell et al. 2008) and silica (Sferratore et al. 2006). Although other nutrients may be governed by different processes, the overall principle of mass balance applies, and a general accounting procedure similar to that of the NANI calculations may be developed for large-scale assessment of these nutrient fluxes to coastal waters. Preliminary work on a phosphorus calculator has shown promise, and a version should be forthcoming soon.

• Providing input parameters to ReNuMa (Regional Nutrient Management) model: ReNuMa (http://www.eeb.cornell.edu/biogeo/nanc/usda/renuma.htm) is a regional hydrology and nutrient loading model, running in a large-watershed-scale similar to the scale in which NANI is estimated. ReNuMa is designed to allow planners and other stakeholders to explore scenarios for reducing N fluxes from the landscape. Most of the nutrient model parameters of ReNuMa are either the components of NANI (e.g., atmospheric N deposition, fertilizer N application, and agricultural N fixation) or indirectly estimated during the NANI calculation (e.g., unsewered population and animal N excretion). We are currently developing additional tools generating ReNuMa parameter worksheets using outputs from the NANI-accounting tool.

7. Acknowledgements

Development of NANI Calculator Toolbox is currently supported by NOAA award NA05NOS478120, "Watershed-Estuary-Species Nutrient Susceptibility," NOAA Center for Sponsored Coastal Ocean Research, Coastal Hypoxia Research Program (http://sitemaker.umich.edu/chrpwe/home). This paper is Contribution #135 in the NOAA Coastal Hypoxia Research Program series. Support has also been provided by the Cornell Agriculture, Energy, and Environment Program. The Baltic Nest Institute (http://nest.su.se) has provided support for developing a version of the NANI Calculator Toolbox for Baltic Sea watersheds using European datasets. We would like to thank Beth Boyer, Sylvia Schaefer, and Haejin Han for sharing supporting data from their published papers. DPS also thanks the Land Ocean Interactions in the Coastal Zone (LOICZ) program for supporting presentation of this material in conference venues.

8. References

Aulenbach, B.T., Buxton, H.T., Battaglin, W.A., and Coupe, R.H., 2007. Streamflow and nutrient fluxes of the Mississippi-Atchafalaya River Basin and subbasins for the period of record through 2005. U.S. Geological Survey Open-File Report 2007-1080.

Boyer, E.W., Goodale, C.L., Jaworski, N.A., Howarth, R.W., 2002. Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. Biogeochem. 57/58, 137-169.

Byun, D.W., Schere, K.L., 2006. Review of the governing equations, computational algorithms, and other components of the Models-3 Community Multiscale Air Quality (CMAQ) modeling system. Appl. Mech. Revs. 59, 51-77.

Chinkin, L.R., Ryan, P.A., Coe, D.L., 2003. Recommended improvements to the CMU ammonia emission inventory model for use by LADCO. Revised Final Report 902350-2249-FR2, Sonoma Technology, Inc., 1360 Redwood Way, Suite C, Petaluma, California. http://www.ladco.org/reports/rpo/emissions/ammonia_recommended_improvements_sti.pdf.

Eriksson Hägg, H., Humborg, C., Mörth, C.-M., Medina, M. R., Wulff, F., 2010. Scenario analysis on protein consumption and climate change effects on riverine N export to the Baltic Sea. Environ. Sci. Technol. 44, 2379-2385.

Goolsby, D.A., Battaglin, W.A., Lawrence, G.B., Artz, R.S., Aulenbach, B.T., Hooper, R.P., Keeney, D.R., and Stensland, G.J., 1999. Flux and sources of nutrients in the Mississippi-Atchafalaya River Basin - topic 3 report for the integrated assessment on hypoxia in the Gulf of Mexico: Silver Spring, Md., NOAA Coastal Ocean Office, NOAA Coastal Ocean Program Decision Analysis Series No. 17, 130 p.

Han, H., Allan, J.D., 2008. Estimation of nitrogen inputs to catchments: comparison of methods and consequences for riverine export prediction. Biogeochem. 91, 177-199.

Han. H., Allan, J.D., Scavia, D., 2009. Influence of climate and human activities on the relationship between watershed nitrogen input and river export. Environ. Sci. Technol. 43, 1916-1922.

Howarth, R.W., Billen, G., Swaney, D.P., Townsend, A., Jaworski, N., Lajtha, K., Downing, J.A., Elmgren, R., Caraco, N., Jordan, T., Berendse, F., Freney, J., Kudeyarov, V., Murdoch, P., Zhaoliang, Z., 1996. Riverine inputs of nitrogen to the North Atlantic Ocean: Fluxes and human influences. Biogeochem. 35, 75-139.

Howarth R.W., Swaney, D.P., Boyer, E.W., Marino, R., Jaworski, N., Goodale, C., 2006. The influence of climate on average nitrogen export from large watersheds in the northeastern United States. Biogeochem. 79, 163-186.

Jordan, T.E., Weller D.E., 1996. Human contributions to terrestrial nitrogen flux. BioSci. 46, 655-664.

Kellogg, R.L., Lander, C.H., Moffitt, D.C., Gollehon, N., 2000. Manure nutrients relative to the capacity of cropland and pastureland to assimilate nutrients: Spatial and temporal trends for the United States. USDA-NRCS, USDA-ERS, nps00-0579, GSA National Forms and Publication Center, Fort Worth, TX. Available online at: http://www.nrcs.usda.gov/technical/NRI/pubs/manntr.html.

Lander, C.H., Moffitt, D., Alt, K., 1998. Nutrients available from livestock manure relative to crop growth requirements. Resource Assessment and Strategic Planning Working Paper 98-1, United States Department of Agriculture, NRCS. Available online at: http://www.nrcs.usda.gov/technical/NRI/pubs/nlweb.html.

Ruddy, B.C., Lorenz, D.L., Mueller, D.K., 2006. County-level estimates of nutrient inputs to the land surface of the conterminous United States, 1982-2001: U.S. Geological Survey Scientific Investigations Report 2006-5012, 17 p. Available online at: http://pubs.usgs.gov/sir/2006/5012/.

Russell, M.J., Weller, D.E., Jordan, T.E., Sigwart, K.J., Sullivan., K.J., 2008. Net anthropogenic phosphorus inputs: spatial and temporal variability in the Chesapeake Bay region. Biogeochem. 88, 285-304.

Schaefer, S.C. Alber, M.A., 2007. Temperature controls a latitudinal gradient in the proportion of watershed nitrogen exported to coastal ecosystems. Biogeochem. 85, 333-346.

Schaefer, S.C., Hollibaugh, J.T., Alber, M., 2009. Watershed nitrogen input and riverine export on the west coast of the U.S. Biogeochem. 93, 219-233.

Sferratore, A., Garnier, J., Billen, G., Conley, D.J., Pinault. S., 2006. Diffuse and point sources of silica in the Seine river watershed. Environ. Sci. Technol. 40, 6630-6635.